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ABSTRACT

Angles of Arrival (AOAs) are popular measurements to locate a sig-
nal source. They can yield a position if the source is near the sensors
or a DOA if it is far away. Point positioning and DOA localization
require different estimators and the knowledge if the source is near
or far is needed. Nevertheless, such knowledge about the source
range is often not available in practice. This paper first analyzes
the consequences of point positioning of a distant source and DOA
estimation of a near one. It next proposes a unified estimator that
provides a position estimate if it is near or a DOA estimate if it is
far, without requiring any prior knowledge about the range region
of where it lies. The estimator is derived using the Maximum Like-
lihood criterion with the Gauss Newton implementation, using the
modified polar coordinates to represent the source location. A pre-
liminary solution using the semi-definite relaxation is developed to
initialize the estimator. Simulations validate the performance of the
proposed estimator in reaching the CRLB performance.

Index Terms— DOA Estimation, Localization, Position, AOA

1. INTRODUCTION

AOA has received much attention recently for the localization of a
signal source [1, 2, 3, 4, 5, 6, 7, 8]. Compared to the range based
measurement such as Time of Arrival (TOA) [9, 10, 11, 12] or Time
Difference of Arrival (TDOA) [13, 14, 15, 16, 17], AOA offers the
advantage without the need of time stamping the signal or synchro-
nization among the receivers. It also minimizes the transmission re-
sources as AOA can be determined locally within a sensor, avoiding
sensor signal transmission for cross-correlation as in TDOA. Obtain-
ing AOA, however, requires a more sophisticated sensor with multi-
ple receiving elements and higher computation ability [18, 19, 20].

An AOA defines a straightline originating from the sensor that
passes through the source. The AOA lines from the sensors intersect
together and yield a source position estimate. When the source is far
away, however, the AOA lines would be nearly in parallel and fail to
intersect properly to form a reasonable position estimate. In such a
situation, we can only be able to determine the DOA of the source
by combining the AOA measurements.

The knowledge that the source is near or far is seldom available
in practice before localization. Applying point positioning estima-
tor for a far away source would yield unreliable result, and this is
reflected by the thresholding behavior in the Hybrid Bhattacharyya-
Barankin bound [21], called Abel Bound here, as the source range
increases. Using DOA estimation for a near source would not cause
thresholding effect, but rather produces a large amount of bias. This
paper proposes an estimator that does not require such a knowledge.

It gives the position if the source happens to be near and the DOA if
it is distant.

The proposed estimator applies the modified polar coordinates
representation (MPR) [22] of the source location, rather than the
Cartesian coordinates. MPR uses inverse-range instead of range.
If the source is near, the inverse-range is meaningful and gives the
source range. When the source is far away, the inverse-range will
approach zero, avoiding the damage caused by large range or coor-
dinate estimate that would lead to unreliable angle estimate.

The proposed estimator is derived based on the Maximum Like-
lihood Estimator (MLE) using AOA. One popular implementation of
the MLE is the Gauss-Newton (GN) iteration. It requires an initial
solution guess that is close to the actual solution. We propose an ini-
tial solution by using the semi-definite relaxation (SDR) technique.

Relatively few previous works on this research topic appear in
the literature. Perhaps two related works are [23, 24], and they are
on DOA estimation for a mix of near-field and far-field sources.
The recent work [22] addresses a similar problem, it is, however,
for TDOA measurements only. This paper provides the analysis of
AOA localization for point positioning and DOA estimation, devel-
ops a new GN MLE localization algorithm regardless of the source
that is near or far, and derives an initial solution for MLE using SDR.
The performance of the proposed estimator is illustrated to reach the
Cramer-Rao Lower Bound (CRLB) or the Abel Bound performance.

2. OBJECTIVE AND ANALYSIS

The objective is to determine the position uo = [xo, yo]T of a signal
source or its DOA θo if it is far away, using the AOA measurements
obtained from M receivers at known positions si = [xi, yi]

T , i =
1, . . . ,M . The AOA measurement from the i-th sensor is modeled
as

θi = tan−1

(
yo − yi
xo − xi

)
+ ni. (1)

where tan−1 is the arc-tangent operation with the quadrant taken
into account. The measurement vector is θθθ = [θ1, . . . , θM ]T . n =
[n1, . . . , nm]T is the additive zero-mean Gaussian noise with co-
variance matrix Q. The true measurement vector without noise is
denoted by θθθo.

We shall next examine the effect when the source is away from
or near to the sensors, using point positioning and DOA estimation.

2.1. Point Positioning

Point positioning assumes the source is not far away from the sensors
so that the AOA lines intersect properly to yield a source location
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Fig. 1. (a) Point positioning model. (b) DOA localization model.

estimate as illustrated in Fig. 1 (a). The cost function for localization
in the commonly used Cartesian coordinates is

Jn(u) = (θθθ − θ̄θθ(u))TQ−1(θθθ − θ̄θθ(u)) (2)

where θ̄θθ(u) is the AOA vector parameterized in terms of the un-
known source position u, using the model (1) with the noise set to
zero. The ML cost function is not quadratic in the unknown and
does not yield an analytic solution for uo. Iterative implementation
is typically applied to find the ML solution with an appropriate initial
solution guess.

The performance of a positioning estimator is often examined
by comparing with the CRLB, assuming the bias is relatively small
compared to the variance. A limitation of the CRLB is that it is un-
able to illustrate the thresholding phenomenon when the noise level
or the source range increases. Perhaps a better bound to use is the
Abel Bound [21]. It merges the Bhattacharyya Bound [25], which
is a generalized version of the CRLB, and the HCR [26, 27] bound,
which is a simplified Barankin-style bound, to form a new bound that
is able to predict the thresholding phenomenon. We have evaluated
the Abel Bound for AOA positioning and the details are provided in
Appendix A.

The limitation of point positioning is illustrated in Fig. 2. It
shows the mean-square error of the source location estimate obtained
by minimizing the ML cost Jn(u) as the source range increases. The
number of sensors is 6 and their positions are generated randomly
and tabulated in Table 1. The source is kept at an arbitrary selected
angle θo = 101.31o when increasing its range ro. Each sensor has
a different measurement noise power that is generated randomly and
the average noise power is σ2 = 0.001rad2. The noise from different
sensors are independent. The position estimate follows the CRLB
well as shown in Fig. 2, until the range becomes ro = 45 at which
sudden deviation from the CRLB appears. Also shown is the Abel
Bound. It predicts the thresholding occurrence of the MLE well.

2.2. DOA Estimation

Fig. 1 (b) illustrates the scenario where the source is far from the
sensors and the AOA lines are close to parallel. In such a situa-
tion, we are able to obtain the DOA of the source only. The AOA
measurements are modeled as the DOA of the source corrupted by
measurement noise. The ML cost function is

Jf (θ) = (θθθ − 1θ)T Q−1 (θθθ − 1θ) (3)
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Fig. 2. Thresholding behavior of the source position estimate from
MLE in the Cartesian coordinates.

where θ denotes the source DOA and 1 is anM×1 vector with all of
its elements equal to 1. Let W = Q−1. The solution that minimizes
(3) is

θ = (1TW1)−11TWθθθ . (4)

If the source is not sufficiently far away, applying this model for
DOA estimation will yield a significant amount of bias with respect
to the true DOA θo. The theoretical bias of the estimator (4) is

E [θ − θo] = (1TW1)−11TW(E[θθθ]− 1θo) . (5)

Fig. 3 illustrates the amount of bias as the source range varies.
The settings are the same as in Fig. 2. When the source range is not
large enough, the bias is very significant and dominates the perfor-
mance. The bias is nearly 10 dB higher than the variance at ro = 40.
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Fig. 3. Bias behaviors of DOA estimation in the far-field model.

3. PROPOSED ESTIMATOR

The proposed estimator uses MPR to represent source position in
terms of the DOA angle θo and inverse-range go = 1/ro,

ũo =
[
θo go

]T
. (6)

If the source is not far from the sensors, the inverse-range is mean-
ingful and the corresponding source position in the Cartesian coor-
dinates is

uo = (1/go)
[
cos θo sin θo

]T
. (7)
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When the source is far way, the inverse-range approaches zero and
will not affect much the estimation of the DOA. As a result, the angle
estimate remains accurate.

Under the MPR model, the Abel Bound for ũo can be obtained
by setting in (34) ξξξ(uo) = ũo. For m = 1,

ΨΨΨm =
∂ξξξ(uo)

∂uoT
= −

[
go sin θo −go cos θo

go2 cos θo go2 sin θo

]
. (8)

As shown in Fig. 4 which will be elaborated in details in Section
4, the Abel Bounds for the elements of ũo, which coincide with the
CRLBs in this case, do not exhibit the thresholding effect as for uo

in Fig. 2, when the source range increases. The Abel Bound con-
firms that using MPR can yield a meaningful source range for point
positioning when the source is near and an accurate DOA regardless
of the source range.

We shall next develop the GN iterative MLE in MPR and derive
the initial solution guess.

3.1. MLE in MPR

From (2), the cost function in terms of ũ is

Jn(ũ) =
(
θθθ − θ̄θθ(ũ)

)T
Q−1 (θθθ − θ̄θθ(ũ)

)
. (9)

θ̄θθ(ũ) represents the AOA vector constructed from ũ directly. Substi-
tuting (7) into (1), the true measurement θoi can be parameterized in
terms of ũo as

θoi = tan−1

(
sinθo − goyi
cosθo − goxi

)
= tan−1

(
γo(2)

γo(1)

)
(10)

where
γγγo = [cosθo − goxi , sinθo − goyi]T . (11)

The cost function Jn(ũ) is highly non-linear with respect to the
unknown ũ. The GN approach for optimization is to replace ũ by
its linear approximation at some initial value θ̄θθ(ũ(k)) so that Jn(ũ)
becomes quadratic in the unknown. Taking derivative of the approx-
imated Jn(ũ) with respect to ũ yields the iterative equation

ũ(k+1) = ũ(k)

+ (G(k)TWG(k))−1G(k)TW(θθθ − θ̄θθ(ũ(k))),

k = 0, 1, . . .

(12)

The superscript k denotes the iteration count and W = Q−1. G(k)

is the M × 2 gradient matrix, whose i-th row is given by

G(k)(i, :) =

[
∂θoi
∂θo

,
∂θoi
∂go

]∣∣∣∣
ũ(k)

. (13)

From the parametric form (10), the gradients are

∂θoi
∂θo

=
1

||γγγo||2 [ cosθo , sinθo ]γγγo (14)

and
∂θoi
∂go

=
1

||γγγo||2 [−yi , xi ]γγγo . (15)

θ̄θθ(ũ(k)) in (12) is the reconstructed measurement vector whose
elements, according to (10), are

θ
(k)
i = tan−1

(
sin(ũ(1)(k))− yiũ(2)(k)

cos(ũ(1)(k))− xi ũ(2)(k)

)
. (16)

Applying (12) requires an initial guess ũ(0) that is close to the
actual solution. We next propose an initial solution guess obtained
by using the SDR technique.

3.2. Initial Solution by SDR

We begin by using (7) and expressing (1) as

sin (θi − ni)
cos (θi − ni)

=
sinθo − goyi
cosθo − goxi

. (17)

When the noise ni is small, sin (θi − ni) ≈ sinθi−nicosθi and
cos (θi − ni) ≈ cosθi + nisinθi. Ignoring the approximation error,
putting them to (17) and rearranging give

lini = sin θi cos θo − cos θi sin θo

− go (xi sin θi − yi cos θi)
(18)

where li = (cos θo − goxi) cos θi + (sin θo − goyi) sin θi.
Let us define the unknown vector as

vo = [cos θo, sin θo, go]T . (19)

Stacking (18) for i = 1, . . . ,M yields the matrix equation

Bn = Avo. (20)

B is the M ×M diagonal matrix

B = diag ([l1, l2, . . . , lM ]) . (21)

The i-th row of A is

A(i, :) =
[
sin θi − cos θi − (xi sin θi − yi cos θi)

]
. (22)

There are only two independent unknowns in vo. The solution
for vo is obtained by solving the weighted least squares problem
with a quadratic constraint given by

v = argmin
v

vTATΩΩΩAv (23)

subject to
1 = v(1)2 + v(2)2. (24)

The cost function to minimize in (23) is obtained by pre-multiplying
(20) with the weighting matrix ΩΩΩ and then its transpose. We choose
the weighting matrix as ΩΩΩ =

(
BQBT

)−1
. (23) with (24) is a gen-

eralized trust region subproblem (GTRS) and its solution exists. We
solve this constrained optimization problem using SDR instead.

Let V = vvT and relax its rank to be larger than one. The
original optimization problem is approximated by

V = argmin
V∈S3

tr
(
ATΩΩΩAV

)
(25)

subject to

0 = 1− tr (MV)

V � 0
(26)

where M is a 3 × 3 matrix of zero except the (1,1) and (2,2) ele-
ments are unity. The solution V of this approximated problem can
be obtained by the CVX toolbox [28]. Let vmax be the eigenvector
of V having the largest eigenvalue λmax. The solution for vo is

v =
√
λmaxvmax . (27)

It can be shown as the global solution of the optimization problem.
In terms of the initial solution for the GN MLE, from the defini-

tion of v in (19),

ũ(0) =
[
tan−1 (v(2)/v(1)) v(3)

]T
. (28)

The matrix B depends on the true solution. We shall set B to
the identity (other non-zero value may also be possible) and obtain
a preliminary solution. It can be used to construct an approximation
of B, from which a better solution is generated as the initial guess
for the GN MLE.
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Table 1. sensor positions for localization.
i 1 2 3 4 5 6
xi 0 -3.43 -0.59 -4.94 -1.29 -3.35
yi 0 2.55 5.31 -2.13 2.14 5.61

4. SIMULATION

We shall examine the performance of the proposed MLE-MPR and
the initial solution SDR-MPR, and compare them with the MLE in
the Cartesian coordinates (MLE-Cartesian) that is implemented us-
ing GN iteration with ideal initialization at the true source location.
The setting is the same as that for Fig. 2. The number of ensemble
runs is 1000. The unit of the measurement noise power and DOA
MSE are in rad2.

Fig. 4 illustrates the performance of the proposed MLE-MPR
solution under the same scenario as in Fig. 2. MLE-MPR is able
to yield performance matching well with the Abel Bounds, for
both inverse-range and the DOA estimates. Better accuracy in the
DOA estimate appears at range 10 when the source is close the
sensors. The DOA estimate converted from MLE-Cartesian is not
good when the source range is larger than 40, due to the threholding
phenomenon as seen in Fig. 2. Although the inverse-range estimate
from MLE-MPR becomes meaningless as it approaches zero when
the range increases, it remains to provide an accurate DOA estimate.
MLE-MPR unifies the near and distant source localization together.
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Fig. 4. Performance of the proposed MLE-MPR.

To complete the study, Fig. 5 examines the performance under
a near source situation as the average measurement noise power σ2

increases. The source range is fixed at 80. When the noise power
is small, MLE-Cartesian and MLE-MPR achieve the CRLB per-
formance, and SDR-MPR cannot which is caused by the solution
bias. As the noise power increases, MLE-Cartesian diverges from
the CRLB for the angle estimate at σ2 = 0.001, while the MLE-
MPR remains to lie on the CRLB until σ2 = 0.01. SDR-MPR
provides more stable performance than both MLE-MPR and MLE-
Cartesian when the noise power is large.

5. CONCLUSIONS

Using AOA measurements, the paper first analyzed the threshold-
ing phenomenon for point positioning in 2-D as the source range
increases by evaluating the Abel Bound, and the significant bias of
DOA estimation if the source range is not sufficiently large. We next
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Fig. 5. Performance of the proposed SDR-MPR and MLE-MPR.

developed an estimator for AOA 2-D localization that does not re-
quire the knowledge if the source is near or far from the sensors. It
yields a point position if the source is near and a DOA estimate if it
is far. The proposed estimator expresses the source position in MPR
and applies MLE with GN iterative implementation to obtain the so-
lution. An initial solution is derived based on SDR, which acts as
the initialization of the GN MLE in MPR. Simulations validate the
performance of the proposed estimator in reaching the CRLB perfor-
mance, regardless of the source that is near or far from the sensors.
Some study for the AOA 3-D positioning case can be found in [29].

Appendix A

The information matrix of the Abel Bound [21] is

Hm,l =

[
Km L
LT Jl

]
(29)

wherem is the order of the Bhattacharyya matrix and l is the number
of test points in the HCR bound. In this study, we choose m = 1
and l = 4.

For 2D AOA localization under Gaussian noise, K1 is the 1-st
order Bhattacharyya matrix given by

K1 =
∂θθθoT

∂uo
Q−1 ∂θθθo

∂uoT
. (30)

θθθo here denote the true measurement vector without noise expressed
in terms of the actual source position. The (i, j)-th element of Jl is

[Jl]i,j = exp
{−1

2

[
θθθ[i]TQ−1θθθ[i] + θθθ[j]TQ−1θθθ[j]

− θθθoTQ−1θθθo

− (θθθ[i] + θθθ[j] − θθθo)TQ−1(θθθ[i] + θθθ[j] − θθθo)
] } (31)

where θθθ[i] is the i-th test point. The k-th block of L for m = 1 is

[L]1,k =
∂θθθoT

∂uo
Q−1

(
θθθ[k] − θθθo

)
. (32)

Denoting ξξξ(uo) as a function of uo, the Abel Bound on the variance
of ξξξ(uo) for our setting of m = 1 is

cov(ξξξ) ≥ ΓΓΓm,lH
−1
m,lΓΓΓ

T
m,l , (33)

ΨΨΨ1 =
[
∂ξξξ(uo)

∂uoT

]
, (34)

ΦΦΦl =
[
ξξξ(u[1])−ξξξ(uo) ξξξ(u[2])−ξξξ(uo) ... ξξξ(u[l])−ξξξ(uo)

]
, (35)

ΓΓΓm,l =
[
ΨΨΨ1 ΦΦΦl

]
. (36)
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