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ABSTRACT

Tensor decompositions are regarded as a powerful tool for multi-
dimensional signal processing. In this contribution, we focus on the
well-known Canonical Polyadic (CP) decomposition and present a
first-order perturbation analysis of the SEmi-algebraic framework
for approximate CP decompositions via SImultaneous matrix diag-
onalization with Generalized Unfoldings (SECSI-GU), which is ad-
vantageous for tensors of an order higher than three. Numerical re-
sults indicate that the analytical relative Mean Square Factor Error
(rMSFE) of the estimated factor matrices resulting from each gen-
eralized unfolding considered in SECSI-GU matches the empirical
rMSFE very well. As SECSI-GU considers all possible partitionings
of the tensor modes resulting in a large number of candidate fac-
tor matrix estimates, an exhaustive search-based criterion to select
the final factor matrix estimates leads to a prohibitive computational
complexity. The accurate performance prediction achieved by the
first-order perturbation analysis conducted in this paper will signif-
icantly facilitate the selection of the final factor matrix estimates in
an efficient manner and will therefore contribute to a low-complexity
enhancement of SECSI-GU.

Index Terms— Canonical Polyadic decomposition, generalized
unfoldings, first-order perturbation analysis

1. INTRODUCTION
The R-way Canonical Polyadic (CP) decomposition, also known
as Parallel Factor (PARAFAC) analysis [1] or Canonical Decom-
position (CANDECOMP) [2], has found applications in a variety
of research fields, including array signal processing, wireless com-
munications, and image processing [3], [4], [5]. To accomplish
the challenging task of computing an approximate CP decompo-
sition of observed signals of interest in additive noise, a SEmi-
algebraic framework for approximate CP decompositions based on
SImultaneous matrix diagonalizations (SECSI) was proposed in
[6], [7], [8]. SECSI algebraically rephrases the CP decomposition
into a set of less complex Simultaneous Matrix Diagonalization
(SMD) problems. Combining generalized unfoldings with the idea
of considering all possible generalized unfoldings to obtain multiple
candidate CP models as in SECSI leads to SECSI with Generalized
Unfoldings (SECSI-GU) [9]. For tensors with R > 3 dimensions,
SECSI-GU enhances the identifiability and outperforms SECSI in
terms of estimation accuracy, and it is very flexible in controlling the
complexity-accuracy trade-off [9]. Such semi-algebraic approaches
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exhibit superiority over the Alternating Least Squares (ALS) pro-
cedure [1], [2] which may require a large number of iterations and
is sensitive to ill-conditioned data. In addition, the non-iterative
nature of the semi-algebraic methods enables a parallelized imple-
mentation, which is not possible with iterative methods such as
ALS.

Recently, the performance analysis of the truncated Higher-
Order SVD (HOSVD) [10] and the approximate CP decomposition
via SECSI [11] for 3-D tensors have been carried out. These new
advances in perturbation analysis of tensor decompositions further
spark the interest in developing a performance analysis framework
for SECSI-GU. Taking into account all possible generalized unfold-
ings, SECSI-GU accordingly forms and solves a large number of
SMDs (up to 3R − 3 · 2R + 3 for an R-D tensor [9] and twice this
amount if the considerations at the end of Section 3 are taken into
account). Several heuristic selection criteria have been proposed to
determine which SMDs to solve and how to select the final estimates
of the factor matrices [9]. A performance analysis of SECSI-GU
will enable us to predict the performance of SECSI-GU with respect
to each of the possible generalized unfoldings and consequently
to select the generalized unfolding leading to the “best” solutions
in terms of, e.g., the minimum relative Mean Square Factor Error
(rMSFE). Hence, conducting an analytical performance evaluation
of SECSI-GU is not only of theoretical but also of practical interest.

In this paper, we present a first-order perturbation analysis of
SECSI-GU. Note that SECSI-GU constructs the matrices for each
SMD following the concept of the “Semi-Algebraic Tensor Decom-
position” (SALT) algorithm [12], later named DIAG (DIrect AlGo-
rithm for canonical polyadic decomposition) [13], which is essen-
tially different from that of SECSI. The performance analysis of
SECSI-GU presented here has thus fundamental differences from
that of SECSI in [11]. Moreover, the analytical performance eval-
uation of SECSI [11] was derived only for 3-D tensors, while the
results shown in this contribution are applicable also to tensors with
more than three dimensions. On the other hand, DIAG constructs
only a single SMD from a single appropriately selected generalized
unfolding, whereas all possible generalized unfoldings are consid-
ered in SECSI-GU, giving rise to multiple candidates of the factor
matrix estimates. Owing to this fact, a performance evaluation of
the DIAG algorithm is inherent in the proposed performance analy-
sis framework for SECSI-GU. As the least-squares Khatri-Rao fac-
torization [14] is employed in the final steps of SECSI-GU to obtain
the estimates of the factor matrices [9], we are able to utilize our pre-
vious results of its performance analysis [15] to get the closed-form
expression of the rMSFE. As we show via numerical simulations, it
leads to a very accurate prediction for the rMSFE of SECSI-GU.

3196978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Throughout this paper, the r-mode product between an R-way
tensor with size Ir along mode r = 1, 2, . . . , R represented as A ∈
CI1×I2×...×IR and a matrixU ∈ CPr×Ir is written as A×rU . It is
computed by multiplying all r-mode vectors of A with U , whereas
the r-mode vectors of A are obtained by varying the r-th index from
1 to Ir and keeping all other indices fixed. Aligning all r-mode vec-
tors as the columns of a matrix yields the r-mode unfolding of A
which is denoted by [A](r) ∈ CIr×Ir+1·...·IR·I1·...·Ir−1 . In other
words, [A×r U ](r) = U · [A](r). Here the reverse cyclical or-
dering of the columns, as proposed in [16], is used for the r-mode
unfoldings. The tensor IR,d is an R-dimensional identity tensor of
size d× d× . . .× d, which is equal to one if all R indices are equal
and zero otherwise. A d×d identity matrix, on the other hand, is de-
noted by Id. Moreover, the Kronecker product between two matrices
is expressed byA⊗B and the Khatri-Rao (column-wise Kronecker)
product by A �B. The vectorization operation of a matrix is sym-
bolized by vec{·}. We use the superscript + for the Moore-Penrose
pseudo inverse of a matrix.

2. CP DECOMPOSITION VIA SECSI-GU
The CP decomposition of an R-way rank-d tensor X 0 is written as

X 0 = IR,d ×1 F1 ×2 · · · ×R FR ∈ CM1×M2×···×MR , (1)

where Fr ∈ CMr×d (r = 1, 2, . . . , R) represent the factor matri-
ces. Dividing the set of indices (1, 2, . . . , R) into a P -dimensional
subset α(1) = [α1, α2, . . . , αP ] and an (R − P )-dimensional sub-
set α(2) = [αP+1, αP+2, . . . , αR] with 1 ≤ P < R, SECSI-GU
considers generalized unfoldings

[X 0](α(1),α(2)) = (Fα1 � · · · � FαP ) ·
(
FαP+1 � · · · � FαR

)T
, (2)

where the first P indices are arranged into the rows and the remain-
ing R − P indices into the columns. Assigning the different modes
into three non-empty groups yields

FA = Fα1 � · · · � Fαt ∈ CMA×d

FB = Fαt+1 � · · · � FαP ∈ CMB×d

FC = FαP+1 � · · · � FαR ∈ CMC×d,

where MA =
∏t
r=1Mαr , MB =

∏P
r=t+1Mαr , and MC =∏R

r=P+1Mαr with 1 ≤ t < P < R. In addition, αA, αB, and
αC contain the indices assigned to each of the three groups, respec-
tively, which appear later in the legend of the figures in Section 4.
Consequently, the generalized unfolding in (2) can be written as

[X 0](α(1),α(2)) = (FA � FB) · FT
C . (3)

For a certain generalized unfolding of the perturbed version of X 0

given by X = X 0 + N , we summarize SECSI-GU as follows:

• Compute the truncated SVD of [X ](α(1),α(2)) ∈ CMA·MB×MC

and obtain

[X ](α(1),α(2))≈Û
[s] · Σ̂[s] · V̂ [s]H , (4)

where Û [s] ∈ CMA·MB×d, V̂ [s] ∈ CMC×d, and Σ̂[s] ∈
Cd×d. The column space of Û [s] is an estimate of the column
space of [X ](α(1),α(2)). Also define Ẑ[s] = Σ̂[s] · V̂ [s]H ∈
Cd×MC .

• Partition Û [s] ∈ CMA·MB×d into MA blocks of size MB× d
denoted by Û [s]

m , m = 1, 2, . . . ,MA, such that

Û [s] =


Û

[s]
1

...
Û

[s]
MA

 . (5)

• Construct a set of matrices Γ̂p,m = Û
[s]+

p · Û [s]
m ∈ Cd×d,

where m = 1, 2, . . . ,MA, and p is chosen according to

p = arg min
n=1,2,...,MA

cond
{
Û [s]
n

}
, (6)

with cond {·} representing the condition number.

• Compute an (approximate) SMD of Γ̂p,m ∈ Cd×d (m =
1, 2, . . . ,MA)

Γ̂p,m≈T̂ · D̂m · T̂−1, (7)

where D̂m are diagonal matrices, thereby obtaining T̂ ∈
Cd×d, which approximates the two Khatri-Rao productsFA�
FB and FC as follows:

Û [s] · T̂ ≈ FA � FB = Fα1 � · · · � FαP (8)

Ẑ[s]T · T̂−T ≈ FC = FαP+1 � · · · � FαR . (9)

• Perform the least-squares Khatri-Rao factorization of Û [s] ·T̂
and of Ẑ[s]T · T̂−T, respectively, to obtain estimates of the
factor matrices F̂r (r = 1, 2, . . . , R).

3. PERFORMANCE ANALYSIS OF SECSI-GU
Let us denote the perturbations of FA � FB and FC caused by ad-
ditive noise as ∆ (FA � FB) and ∆FC, respectively. In this sec-
tion, we derive the closed-form expression of vec{∆ (FA � FB)}
and vec{∆FC}. They can be regarded as the input of the already es-
tablished first-order perturbation analysis of the least-squares Khatri-
Rao factorization [15] to finally obtain the closed-form expression of
the rMSFE of each factor matrix.

With ∆U [s] and ∆T representing the perturbations of U [s] and
T , respectively, as in

Û [s] = U [s] + ∆U [s] and T̂ = T + ∆T , (10)

∆ (FA � FB) can be expressed as

∆ (FA � FB) = ∆U [s] · T +U [s] ·∆T +O(∆2), (11)

where O(∆2) includes all terms with an order higher than one. The
SVD of [X 0](α(1),α(2)) is given by

[X 0](α(1),α(2)) =
[
U [s] U [n]

]
·
[

Σ[s] 0
0 0

]
·
[
V [s] V [n]

]H
,

where the columns of U [s] ∈ CMA·MB×d, V [s] ∈ CMC×d, and
U [n] ∈ CMA·MB×(MA·MB−d) span the column space, row space,
and null space of [X 0](α(1),α(2)), respectively. In addition, Σ[s] ∈
Cd×d is a diagonal matrix whose diagonal elements are the d non-
zero singular values of [X 0](α(1),α(2)). Based on the first-order
perturbation analysis of the SVD [17], we have

∆U [s] = Υ[n] · [N ](α(1),α(2)) · V
[s] ·Σ[s]−1

+O(∆2), (12)
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where Υ[n] = U [n] ·U [n]H ∈ CMA·MB×MA·MB is the projection
matrix into the noise subspace of [X 0](α(1),α(2)), and [N ](α(1),α(2))

is the generalized unfolding of N . The vectorization of ∆U [s] is
obtained as

vec
{

∆U [s]
}

=
(
Σ[s]−1

· V [s]T ⊗Υ[n]
)
· vec

{
[N ](α(1),α(2))

}
+O(∆2). (13)

Assume that the covariance matrix Rnn of the vectorization of
the 1-mode unfolding of the noise tensor N , given by n1 =

vec
{

[N ](1)

}
, is known. We now define a permutation matrix

P ∈ {1, 0}M×M that satisfies vec
{

[N ](α(1),α(2))

}
= P ·n1 and

consequently write the vectorization of ∆U [s] in the form of

vec
{

∆U [s]
}

= K0 · n1 +O(∆2), (14)

whereK0 =
(
Σ[s]−1

· V [s]T ⊗Υ[n]
)
· P ∈ Cd·MA·MB×M .

To compute T̂ in SECSI-GU, we employ the JDTM (Joint Diag-
onalization based on Targeting hyperbolic Matrices) algorithm [18]
for the SMD of Γ̂p,m ∈ Cd×d (m = 1, 2, . . . ,MA). According to
the performance analysis of JDTM in [19], we have

vec {∆T } = −A+ ·B · γ +O(∆2), (15)

where

A =

 A1

...
AMA

 , B = IMA ⊗B0, γ =

 γ1
...

γMA

 ,
B0 = J(d) ·

(
TT ⊗ T−1

)
∈ Cd

2×d2 ,

Am = J(d) ·
(
Id ⊗

(
T−1 · Γp,m

)
−Dm ⊗ T−1) ∈ Cd

2×d2 ,

γm = vec {∆Γp,m} ∈ Cd
2

. (16)

Here a selection matrix is defined as J(d) ∈ {0, 1}d
2×d2 such that

vec {Off(X)} = J(d) ·vec {X}, where the Off(·) operator sets the
diagonal elements of its input matrix to zeros. Note that Γp,m and
Dm are constructed from the noiseless tensor X 0 and therefore can
be regarded as the “true” version of Γ̂p,m and D̂m, respectively. To
derive the perturbation of Γp,m denoted by ∆Γp,m in (16), let us
write Γ̂p,m in the following form

Γp,m + ∆Γp,m =
(
U [s]
p + ∆U [s]

p

)+
·
(
U [s]
m + ∆U [s]

m

)
. (17)

Based on [20], the matrix pseudo inversion in (17) is expressed as(
U [s]
p + ∆U [s]

p

)+
= U [s]+

p −U [s]+

p ·∆U [s]
p ·U [s]+

p +O(∆2). (18)

Inserting (18) into (17), we obtain the perturbation ∆Γp,m as

∆Γp,m = U [s]+

p ·∆U [s]
m −U [s]+

p ·∆U [s]
p ·U [s]+

p ·U [s]
m +O(∆2).

Define two block selection matrices Jm and Jp such that ∆U
[s]
m =

Jm ·∆U [s] and ∆U
[s]
p = Jp ·∆U [s], respectively. Consequently,

γm = vec {∆Γp,m} first given in (16) is now written as

γm =
(
Id ⊗

(
U [s]+

p · Jm
))
· vec

{
∆U [s]

}
+O(∆2) (19)

−
((
U [s]+

p ·U [s]
m

)T
⊗
(
U [s]+

p · Jp
))
·vec

{
∆U [s]

}
.

Substituting vec
{

∆U [s]
}

in (20) by (14) allows us to express γ,
where γm (m = 1, 2, . . . ,MA) are stacked, as

γ = K2 · n1 +O(∆2), (20)

withK2 =
[
K

(1)T

1 · · · K
(MA)T

1

]T
containing the stacking

ofK(m)
1 ∈ Cd

2×M (m = 1, 2, . . . ,MA) defined via

K
(m)
1 =

(
Id ⊗

(
U [s]+

p · Jm
)

−
(
U [s]+

p ·U [s]
m

)T
⊗
(
U [s]+

p · Jp
))
·K0. (21)

Accordingly, we obtain vec {∆T } first given in (15) as

vec {∆T } = K3 · n1 +O(∆2), (22)

whereK3 = −A+ ·B ·K2 ∈ Cd
2×M .

The vectorization of ∆ (FA � FB) takes the form

vec {∆ (FA � FB)} =
(
TT ⊗ IMA·MB

)
· vec

{
∆U [s]

}
(23)

+
(
Id ⊗U [s]

)
· vec {∆T }+O(∆2).

By inserting (14) and (22) into (23), we have

vec {∆ (FA � FB)} = K4 · n1 +O(∆2), (24)

whereK4 =
(
TT ⊗ IMA·MB

)
·K0 +

(
Id ⊗U [s]

)
·K3.

In the following, we proceed to derive vec {∆FC}. To this end,
let us express F̂C as

FC + ∆FC =
(
Z[s]T + ∆Z[s]T

)
· (T + ∆T )−T , (25)

where ∆Z[s] denotes the perturbation of Z[s] such that Ẑ[s] =
Z[s] + ∆Z[s]. Owing to the fact that [20]

(T + ∆T )−1 = T−1 − T−1 ·∆T · T−1 +O(∆2), (26)

∆FC can be further written as

∆FC = ∆Z[s]T · T−T −Z[s]T · T−T ·∆TT · T−T +O(∆2).

Vectorizing ∆FC leads to

vec {∆FC} =
(
T−1 ⊗ IMC

)
· vec

{
∆Z[s]T

}
+O(∆2)

−
(
T−1 ⊗

(
Z[s]T · T−T

))
· vec

{
∆TT

}
. (27)

Defining a permutation matrix P(d,d) ∈ {0, 1}d
2×d2 satisfying

vec
{

∆TT
}

= P(d,d) · vec {∆T } enables us to use vec {∆T }
already obtained in (22). To derive vec

{
∆Z[s]T

}
for the final

expression of vec {∆FC} given in (27), we rewrite Ẑ[s] originally
defined as Ẑ[s] = Σ̂[s] · V̂ [s]H into

Ẑ[s] = Z[s] + ∆Z[s] = Û [s]H · [X ](α(1),α(2)) . (28)

The resulting expression of ∆Z[s]T

∆Z[s]T= [X 0]T(α(1),α(2))·∆U
[s]∗+ [N ]T(α(1),α(2))·U

[s]∗+O(∆2)
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is further simplified into

∆Z[s]T = [N ]T(α(1),α(2)) ·U
[s]∗ +O(∆2)

due to the observation that the first term [X 0]T(α(1),α(2)) ·∆U
[s]∗ is

a zero matrix according to the definition of ∆U [s] in (12). Taking
the vectorization of ∆Z[s]T gives

vec
{

∆Z[s]T
}

= K5 · n1 +O(∆2), (29)

where K5 =
(
U [s]H ⊗ IMC

)
· P̃ ∈ Cd·MC×M and P̃ ∈

{1, 0}M×M is a permutation matrix leading to vec
{

[N ]T(α(1),α(2))

}
= P̃ · n1.

Finally, vec {∆FC} takes the form

vec {∆FC} = K6 · n1 +O(∆2), (30)

where

K6 =
(
T−1 ⊗ IMC

)
·K5

−
(
T−1 ⊗

(
Z[s]T · T−T

))
· P(d,d) ·K3 ∈ Cd·MC×M .

Taking vec{∆ (FA � FB)} and vec{∆FC} as the input of the
performance analysis of the least-squares Khatri-Rao factorization
[15], we are able to obtain the first-order perturbation of Fr de-
noted by ∆Fr . Its vectorization vec {∆Fr} can be expressed as
vec {∆Fr} = K · n1 +O

(
∆2
)

similar to the vectorization of the
perturbation terms derived above. Subsequently, we get the closed-
form expression of the rMSFE for each factor matrix in terms of the
second-order moments of the noise, i.e., the covariance matrix Rnn

with respect ton1. For detailed derivations and the resulting explicit
expression ofK as well as the rMSFE, the reader is referred to [15].

It is worth noting that T̂ can be alternatively obtained via the
joint diagonalization of another set matrices given by Ωp,m = Ẑ

[s]
m ·

Ẑ
[s]+

p ∈ Cd×d, where Ẑ[s]
m ∈ Cd×M

(2)
C (m = 1, 2, . . . ,M

(1)
C ) are

obtained by partitioning Ẑ[s] as

Ẑ[s] =
[
Ẑ

[s]
1 · · · Ẑ

[s]

M
(1)
C

]
(31)

with M
(1)
C =

∏q
r=P+1Mαr and M

(2)
C =

∏R
r=q+1Mαr , i.e.,

MC = M
(1)
C ·M (2)

C . The index p corresponds to the block Ẑ[s]
p that

has the minimum condition number. Due to space limitations, the
first-order perturbation analysis of SECSI-GU where the SMDs are
constructed as mentioned above is not included in this paper.

4. SIMULATION RESULTS
To demonstrate the validity of our first-order performance analysis
of SECSI-GU, we present comparisons between the analytical total
rMSFE and empirical ones obtained via Monte Carlo simulations.
The factor matricesFr (r = 1, 2, . . . , R) contain elements drawn in-
dependently from a zero-mean Gaussian distribution with unit vari-
ance, while elements of the noise tensor N were drawn similarly
with variance σ2

n. Accordingly, we define SNR = 1/σ2
n. Fig. 1

depicts the results for a real-valued case where R = 4, M1 = 4,
M2 = 7, M3 = 6, M4 = 4, and d = 4. A complex-valued case
is considered in Fig. 2, where R = 5, Mr = 4 (r = 1, . . . , R),
and d = 4. In the R = 4 and R = 5 scenarios, the total number
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Fig. 1. Empirical and analytical total rMSFE versus SNR for a real-
valued scenario whereR = 4,M1 = 4,M2 = 7,M3 = 6,M4 = 4,
and d = 4; “E” in the legend is short for “Empirical”, whereas “A”
for “Analytical”
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Fig. 2. Empirical and analytical total rMSFE versus SNR for a
complex-valued scenario where R = 5, Mr = 4 (r = 1, . . . , R),
and d = 4; “E” in the legend is short for “Empirical”, whereas “A”
for “Analytical”

of generalized unfoldings to be considered reaches 36 and 150, re-
spectively. For clarity of the figures, only the results with respect to
a few generalized unfoldings are shown as representative examples.
In both cases, a good match between the analytical and empirical
results is evident, especially in the higher SNR regime.

5. CONCLUSION
We have presented a first-order perturbation analysis of SECSI-GU
for the approximate CP decomposition of noise-corrupted tensors of
an order higher than three. To obtain the closed-form expression of
the rMSFE for each factor matrix, we derived the first-order pertur-
bations of all intermediate outcomes at every step of the SECSI-GU
framework, ranging from the formulation of target matrices for the
SMDs, to the estimation of the Khatri-Rao products of the factor
matrices. Simulation results show that our performance analysis of
SECSI-GU is able to predict the rMSFEs for each possible general-
ized unfolding very accurately, especially in the higher SNR regime.
For future work, an efficient selection scheme for SECSI-GU will be
designed, which determines the generalized unfolding to be consid-
ered based on the performance prediction provided by this first-order
perturbation analysis. It will avoid computing all possible factor ma-
trix estimates corresponding to all possible generalized unfoldings.
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