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ABSTRACT
This work focuses on the problem of fusing a hyperspectral image
(HSI) and a multispectral image (MSI) to produce a super-resolution
image that admits high spatial and spectral resolutions. Existing al-
gorithms are mostly based on joint low-rank factorization of the ma-
tricized HSI and MSI. This framework is effective to some extent,
but several challenges remain. First, it is unclear whether or not
the super-resolution image is identifiable in theory under this frame-
work, while identifiability usually plays an essential role in such es-
timation problems. Second, most algorithms assume that the degra-
dation operators from the super-resolution image to the HSI and MSI
are known or can be easily estimated – which is hardly true in prac-
tice. In this work, we propose a novel coupled tensor decomposition
method that can effectively circumvent these issues. The proposed
approach guarantees the identifiability of the super-resolution im-
age under realistic conditions. The method can work even without
knowing the spatial degradation operator, which could be hard to
accurately estimate in practice. Simulations using AVIRIS Cuprite
data are employed to demonstrate the effectiveness of the proposed
approach.

Index Terms— Hyperspectral imaging, multispectral imaging,
super-resolution, image fusion, tensor decomposition, identifiability

1. INTRODUCTION

Fusing images sensed by multiple sensors is of great interest to many
applications [1, 2]. In remote sensing, an important fusion problem
is to integrate the information from a hyperspectral image (HSI) and
a multispectral image (MSI), both of which cover the same object
or area. HSIs have very high spectral resolution but relative coarse
spatial resolution, while MSIs have fine spatial resolution but low
spectral resolution. By fusing an HSI and an MSI, a super-resolution
image can be obtained, which can greatly help many analytical tasks
such as spectral unmixing and object detection.

Numerous HSI-MSI fusion methods in literature treat the prob-
lem from a low-rank matrix factorization viewpoint [3, 4, 5, 6, 7, 8,
9, 10]. Intuitively, every pixel of the HSI or MSI can be modeled
as a convex combination of spectral signatures of several materi-
als (or endmembers). By (jointly) unmixing HSI and MSI to such
representation, high-resolution endmembers (from HSI) and the cor-
responding high-resolution spatial distribution (from MSI) can be
estimated. Combining the two, a super-resolution image can be ob-
tained. There are several variations of this basic idea, such as using
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sparse representations, other factorization models (e.g., SVD), and
Bayesian approaches [3, 6, 8]. The matrix factorization approach
has proven to be effective, but there are two major shortcomings.
First, it is unclear if the joint HSI and MSI factorization criteria
proposed in [3, 4, 5, 6, 7] can guarantee the recovery of the super-
resolution image; i.e., there is no assured identifiability. Second, the
approaches usually assume that the degradation operators from the
super-resolution image to the HSI and MSI are known [4, 5, 6, 7]
or can be estimated from data [3]. Assuming precise knowledge of
the degradation operators, especially the spatial degradation opera-
tor (which involves kernel function and hyper-parameter selection),
is often impractical. Without calibration/training data, it is unclear if
the kernel is blindly identifiable.

In this work, we offer an alternative solution to the HSI-MSI
fusion problem. Our method starts from the fact that both HSI and
MSI images are space-space-spectrum “cubes”, and thus are natu-
rally three-way tensors [11]. One nice property of tensors is that
any tensor admits a canonical polyadic decomposition (CPD), and
the decomposition is essentially unique under quite mild conditions.
Hence, we propose a coupled tensor factorization approach for the
HSI-MSI fusion problem. Leveraging the uniqueness of three-way
tensor factorization, we show that this method can provably identify
the super-resolution image. We further show that even when the spa-
tial degradation operator, which is in general hard to estimate, is un-
known, the proposed approach can still guarantee the identification
of the super-resolution image, with slight modifications. Numerical
simulations based on real data show that the proposed approach is
very promising for the HSI-MSI fusion task.

2. PROBLEM STATEMENT AND BACKGROUND

Let us consider a hyperspectral image Y H ∈ RIH×JH×KH , where
IH and JH denote dimensions that span the spatial domain and KH

denotes the number of spectral bands. Similarly, we denote a multi-
spectral image cube as Y M ∈ RIM×JM×KM , where IM , JM and
KM denote the dimensions of two spatial and one spectral coordi-
nates, respectively. We assume that the two images are aligned so
that they describe the same region in the spatial domain. HSIs typ-
ically have hundreds of spectral bands while MSIs have less than
20; i.e., KM � KH in general. On the other hand, MSIs have
much finer resolution in the spatial domain relative to HSIs – i.e.,
IHJH � IMJM typically holds.

Our goal is to integrate HSI and MSI so that a super-resolution
image cube is obtained. That is, we aim at obtaining a Y S ∈
RIM×JM×KH that has the spatial resolution of the MSI and the
spectral resolution of the HSI. As mentioned, this task is of great
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interest to image processing and analytics in geoscience, food in-
spection, anomaly detection and target recognition.
Matrix Factorization-Based Approach. Many recent methods for
HSI-MSI fusion make use of the fact that the matricized HSI and
MSI data are low-rank matrices and come up with low-rank decom-
position based methods to handle the fusion problem [3, 4, 5, 6, 7, 8,
9]. Specifically, consider

YH = [Y H(1, 1, :), . . . ,Y H(IH , JH , :)] ∈ RKH×IHJH , (1)

where Y H(i, j, :) ∈ RKH is a vector that is formed by taking
the (i, j)th pixel of the HSI. By the linear mixture model (LMM)
that is commonly adopted in hyperspectral imaging, we model
YH ≈ GHSTH , where GH ∈ RKH×R, STH ∈ RR×IHJH ,
R � min{IHJH ,KH}, and 1TSTH = 1T and SH ≥ 0 holds.
This low-rank factorization model is based on physical modeling of
the pixels of HSIs: A pixel (point spectrum) YH(:, `) is modeled as
a weighted sum of the spectral signatures of several materials (or
endmembers) that are present in that pixel. This is a widely accepted
model. By similar arguments, we have YM ≈ GMSTM with rank
R, where YM is the matricized MSI. Hence, the matricized super-
resolution image can be synthesized by YS ≈ GHSTM . Here, again,
YS is obtained by applying the operation in (1) to Y S .

The common assumption that is adopted in matrix factoriza-
tion approaches is that there exist two linear operators PH ∈
RIMJM×IHJH and PM ∈ RKM×KH such that YH = YSP

T
H

and YM = PMYS can be obtained from the super-resolution
image YS via linear transformations. Consequently, we have
YH = GH(PHSM )T and YM = (PMGH)STM . Then, GH

and SM can be estimated via jointly factoring YH and YM follow-
ing the described model. The above is the common basic idea behind
the approaches in [3, 4, 5, 6, 7, 8, 9], where various low-rank models
and factorization criteria are employed to enhance performance.
Challenges. The matrix factorization-based approaches for HSI-
MSI fusion are fairly effective and considered state of the art. Nev-
ertheless, two key theoretical and practical challenges remain.

First, existing methods rarely consider the identifiability of YS .
Note that recovering GHSM from compressed measurements YH
and YM can be quite ill-posed, since there are many solutions that
satisfy YH = GHSTH and YM = GMSTM . One could argue iden-
tifiability from a matrix sensing viewpoint [12], but identifiability
for matrix sensing is guaranteed when the degradation operators are
random. In our context, these operators are highly structured – thus
known theory of matrix sensing cannot answer our question. The
coupled factorization approaches with a variety of regularizations
[7, 4, 6, 3] may help in practice – but currently lack theoretical guar-
antees. Note that identifiability is of great interest not only from a
theoretical viewpoint, but also often serves as guidance for practi-
tioners to select and design the ‘correct’ solvers and algorithms –
which have been proven very useful and powerful in pertinent prob-
lems, such as spectral unmixing [13].

Second, most matrix factorization-based fusion algorithms as-
sume that PH and PM are accurately known or can be easily esti-
mated, which is hardly true in practice. The matrix PM is relatively
easier to obtain. However, modeling PH is much more difficult.
The commonly used model is to represent PH as an operator that
blurs q-by-q overlapping grids in the 2D spatial domain of the super-
resolution image and then downsamples one pixel from the blurred
grids to form a low spatial resolution image. This process involves
several factors that are unknown in practice – e.g., the blurring func-
tion and the grid size. There are approaches in the literature, e.g.,
[3], that propose to estimate the degradation operators from data.
But these approaches involve a series of structural assumptions (e.g.,

smoothness and sparsity) on the operators and hyperparameter tun-
ing.

3. PROPOSED APPROACH

In this section, to circumvent the above challenges, we propose a
tensor-based approach to handle the MSI-HSI fusion problem.

3.1. Tensor Algebra Preliminaries

Our method heavily uses tensor algebra. To facilitate our dis-
cussion, we briefly review some key concepts that will be used
in our approach. A three-way tensor X ∈ RI×J×K can be
considered as a three-way array whose elements are indexed by
i, j, k. A tensor can always be ‘explained’ by the so-called canon-
ical polyadic decomposition (CPD) model, i.e., X(i, j, k) =∑F
f=1 A(i, f)B(j, f)C(k, f), with a proper F which we refer to

as the tensor rank or CPD rank [11], where A ∈ RI×F , B ∈ RJ×F ,
and C ∈ RK×F are called the low-rank factors of the three-way
tensor. Since a three-way tensor can be fully characterized by its
low-rank factors, we sometimes use the notation X = JA,B,CK
to represent the tensor.

One nice property of tensors is that the CPD model is essen-
tially unique even when F is much larger than max{I, J,K}. For
example, we have the following theorem:

Theorem 1 [14] Let X = JA,B,CK with A : I ×F , B : J ×F ,
and C : K ×F . Assume that A, B and C are drawn from a jointly
continuous distribution. Also assume I ≥ J ≥ K without loss of
generality. If F ≤ 2blog2 Jc+blog2Kc−2, then the decomposition of
X in terms of A,B, and C is essentially unique, almost surely.

Here, essential uniqueness means that if Ã, B̃, C̃ also satisfy
X = JÃ, B̃, C̃K, we can only have A = ÃΠΛ1, B = B̃ΠΛ2,
and C = C̃ΠΛ3, where Π is a permutation matrix and Λi is a
full rank diagonal matrix such that Λ1Λ2Λ3 = I . One can see that
the uniqueness condition is rather mild: For example, if one has a
80×80×80 tensor, then it admits an essentially unique CPD repre-
sentation if F ≤ 1024. Note that this is far more relaxed compared
to uniqueness conditions for matrix factorization, where nonnegativ-
ity, sparsity, and geometric conditions are needed and the rank has
to be lower than the outer dimensions of the matrix [15, 16].

Two useful operations for tensor are matricization and taking
a mode product. The operation in (1) is in fact one way to ma-
tricize a three-way tensor. In this work, the transpose of opera-
tion in (1) is used and the matricized X has the following form:
X = (B �A)CT ∈ RIHJH×KH , where � denotes the Khatri-
Rao product. The mode product operator essentially multiplies a
tensor by a matrix in one mode (note that a three-way tensor has
three different modes, i.e., columns, rows, and fibers). Therefore
X̃ = X ×1 P1×2 P2×3 P3 multiplies each column, row and fiber
of the tensor by P1, P2, P3 respectively, which leads to a matri-
cized form X̃ = (P2B � P1A)(P3C)T ; see details in [11, 17].

3.2. Degradation as Mode Products

We start with the case where PH and PM are both known and show
how to formulate the fusion problem as a coupled tensor factoriza-
tion problem. Then, we will discuss identifiability issues including
the case where PH is unknown.
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Fig. 1: Illustration of degradation from the super-resolution image
to the HSI and MSI, respectively.

Note that the HSI, MSI, and the super-resolution image are all
naturally modeled as three-way space-frequency tensors. The super-
resolution tensor Y S admits a CPD model, i.e., Y S = JA,B,CK
for appropriate F . Let us assume that the spatial degradation to
the HSI can be modeled by Y H(:, :, k) = P1Y S(:, :, k)P

T
2 , k =

1, . . . ,KH , where P1 is a blurring and dimensionality-reducing ma-
trix that operates on the column dimension of each slab, and P2 does
the same on the row dimension. Such separability is commonly as-
sumed in the matrix factorization approaches, and it makes sense
in practice. For example, the commonly used 2D Gaussian blur-
ring and downsampling procedure, modeled by PHYS in the ma-
tricized form [4, 5, 6, 7], is a separable operation and can be ‘de-
composed’ to a one-dimensional Gaussian convolution plus down-
sampling across rows and another one-dimensional Gaussian convo-
lution plus downsampling across columns of YS(:, :, k)’s. Conse-
quently, the 2-D blurring and downsampling procedure can be mod-
eled using two operators P1 and P2 that are applied to the columns
and rows, i.e., Y H = Y S ×1P1×2P2 and PH = P2⊗P1, where
⊗ denotes the Kronecker product. In the matricized form, we have
YH = ((P2B)� (P1A))CT . Similarly, it is also readily seen that
YM = (B �A) (PMC)T .

3.3. Coupled Tensor Factorization for Super-resolution
Let us first consider the case where PM and PH are known. In this
case, we propose to employ the following formulation for HSI-MSI
super-resolution:

minimize
A,B,C

‖Y H − JP1A,P2B,CK‖2F

+ λ ‖Y M − JA,B,PMCK‖2F ,
(2)

where λ > 0 is a pre-selected parameter that balances the two terms.
Specifically, we jointly decompose the HSI tensor and the MSI ten-
sor to estimate A, B and C using the above. Then, we can re-
construct the super-resolution tensor using the latent factors, i.e.,
Ŷ S(i, j, k) =

∑F
f=1 Â(i, f)B̂(j, f)Ĉ(k, f). The algorithm for

solving Problem (2) is presented in Algorithm 1. We refer to this
algorithm as super-resolution tensor reconstruction (STEREO for
short). In the algorithm, Hi and Mi denote the ith mode matri-
cization of the HSI and MSI, respectively. The idea is to optimize
Problem (2) with respect to (w.r.t.) A, B and C one at a time while
fixing the other two, and repeating the process cyclically – which is
reminiscent of the classic alternating least squares (ALS) algorithm
in the tensor literature. Note that each subproblem in STEREO is a
Sylvester’s equation problem and can be solved rather efficiently in
O(n3) flops. Also note that various other optimization approaches
can be employed, but we have to postpone this discussion for the
journal version.

We also consider the case where the spatial degradation opera-
tors P1 and P2 are completely unknown. In that case, we propose to
employ the following estimator:

minimize
A,B,Ã,B̃,C

∥∥∥Y H −
r
Ã, B̃,C

z∥∥∥2
F

+ λ ‖Y M − JA,B,PMCK‖2F .
(3)

Algorithm 1: STEREO
Initialization: λ, F , A, B, C
repeat

A← argminA‖H1 − (C � P2B)ATP T
1 ‖2F + λ‖M1 −

(P3C �B)AT ‖2F ;
B ← argminB‖H2 − (C � P1A)BTP T

2 ‖2F + λ‖M2 −
(P3C �A)BT ‖2F ;
C ← argminC‖H3 − (P2B �P1A)CT ‖2F + λ‖M3 − (B �
A)CTP T

3 ‖2F ;
until Some stopping criterion is met
Reconstruct Y S using Ŷ S(i, j, k) =

∑F
f=1 A(i, f)B(j, f)C(k, f).

In the above formulation, we replaced P1A and P2B with Ã
and B̃, respectively. A similar alternating optimization approach can
be employed to handle this criterion. The motivation of the formu-
lation is as we stated in the last subsection: The blurring and down-
sampling kernel for the spatial degradation is hard to know. Note
that if one could identify A, B and C from (3), one can still recon-
struct Y S . We should mention that we assume knowledge of PM
for a couple of reasons: First, it is relatively easy to get a reasonable
estimate of PM by simply inspecting the employed wavelengths of
the HSI and MSI cameras, respectively – which means there is no
hyper-parameter such as the size of the blurring grid as in PH that is
hard to determine in practice. Second, the common factor C in both
terms of (3) is essential for coupling the two factorizations together
and fixing the permutation and scaling ambiguities that are inherent
in tensor decomposition, which we need for reconstruction.

3.4. Identifiability Issues

Regarding the identifiability of the super-resolution image cube, we
have the following theorem:

Theorem 2 Let Y H = JP1A,P2B,CK and Y M = JA,B,PMCK.
Assume without loss of generality that IM ≥ JM ≥ KM . Also as-
sume that A, B and C are drawn from a jointly continuous distri-
bution, that P1, P2 and PM have full rank, and that (A?,B?,C?)

is an optimal solution to Problem (2). Then, Ŷ S(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth Y S

almost surely ifF ≤ min
(
2bγc−2, IHJH

)
, where γ = log2(JMKM ).

For the case where P1 and P2 are unknown, we also have

Theorem 3 Let Y H = JÃ, B̃,CK and Y M = JA,B,PMCK.
Assume without loss of generality that IH ≥ JH ≥ KH and IM ≥
JM ≥ KM . Also assume that A, B and C are drawn from a jointly
continuous distribution, that P1, P2 and PM have full rank, and
that (Ã?, B̃?,A?,B?,C?) is an optimal solution to Problem (3).
Then, Ŷ S(i, j, k) =

∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers
the ground-truth Y S almost surely if F ≤ min{2bγ1c−2, 2bγ2c−2},
where γ1 = log2(JMKM ) and γ2 = log2(JHKH).

The proofs of the theorems are relegated to a journal version
due to space limitations; the idea is to make use of Theorem 1 to
characterize the optimal solutions of Problems (2) and (3). To have
some concrete sense of the theorems, let consider an example where
we are interested in reconstructing a super-resolution image of size
600 × 512 × 130 from an HSI of size 150 × 128 × 130 and an
MSI of size 600×512×8. Then reconstruction is guaranteed under
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the assumptions of Theorem 2 or 3 if the CPD rank of the super-
resolution image tensor (as well as those of the HSI and MSI) sat-
isfies F ≤ 1024. This is in general easy to satisfy (approximately)
in practice. In table 1, we show the normalized mean squared error
(NMSE), defined by ‖ŶS − YS‖F /‖YS‖F , of using a CPD model
to reconstruct a subimage of the AVIRIS Cuprite image [18]. One
can see that for all the tested ranks, the reconstruction error is rather
small. Note that under the tested ranks, the CPD model is unique.
This means that using a unique CPD model to approximate HSI and
MSI cubes is very reasonable.

Table 1: The NMSE of using a CPD model to approximate a subim-
age of the AVIRIS Cuprite data that is of size 512× 614× 187.

rank 300 400 500 600 700 800
NMSE 0.019 0.016 0.0142 0.0131 0.0123 0.0116

4. SIMULATIONS

In this section, we use a real available HSI as a reference (i.e., to act
as the super-resolution image) and synthesize a HSI and MSI follow-
ing the so-called Wald’s protocol [19] that is widely adopted in the
HSI-MSI fusion literature. Specifically, we model the degradation
process from super-resolution to the HSI as a combination of image
blurring by a 9 × 9 Gaussian kernel and down-sampling the result
by a factor of d = 16 (we sample 1 out of 4 × 4 = 16 blurred pix-
els). To obtain the MSI, the spectral response PM is modeled as a
matrix that picks and averages certain bands of the super-resolution
spectrum according to LANDSAT sensor specifications [20]. The
dataset used in the experiments is the Cuprite HSI downloaded from
the AVIRIS platform, after subtracting the minimum and divide by
the maximum pixel. It represents geological features in 187 bands
of spatial resolution 512 × 608, i.e. Y S ∈ R512×608×187. Then,
Y H ∈ R128×152×187 and Y M ∈ R512×608×6 are produced.

The baseline algorithms used for comparison are: Naive,
where each pixel of the HSI is replicated as many times as needed
to fit the super spatial resolution, FUSE [5] and FUMI [7], among
which FUMI is considered state-of-the-art. The algorithm in [6] was
also tested but failed to operate due to memory overflow. To evaluate
performance, we adopt popularly used metrics as defined in [21, 1],
namely cross correlation (CC), spectral angle mapper (SAM), and
relative dimensional global error (ERGAS). We also present the
reconstruction normalized mean squared error (NMSE) as used in
Table 1. In a nutshell, high values of CC and low values of ERGAS,
SAM and NMSE correspond to good fusion performance.

All simulations were performed in Matlab on a Linux server
with 3.6 GHz cores and 32 GB RAM. We initialize STEREO by
the CPD of Y M , which is computed using Tensorlab [22], run
for 25 iterations at maximum. In all the simulations, we fix the λ
parameter to be 1. The stopping criterion of FUMI is set to be the
relative cost error being less than 10−4 as suggested in [7].

Table 2 shows the performance of the algorithms . The rank
used for the full tensor decompositions is F = 750 and the rank
of the low rank matrix model is R = 10. It is important here to
note that F = 750 was chosen following Theorems 2-3. One can
see that both STEREO and FUMI produce comparably good super-
resolution images, while the runtime of STEREO is significantly less
than that of FUMI. Specifically, STEREO uses around 1/15 the run-
time of FUMI. Also note that STEREO offers identifiability guaran-
tees, while FUMI in general does not. The Naive and FUSE meth-
ods are fast since they employ very simple procedures, but show
much worse super-resolution performance relative to the more so-
phisticated approaches, i.e., FUMI and STEREO.

Table 2: Performance of the algorithms assuming the degradation
operators are known.

Algorithm NMSE CC SAM ERGAS runtime (min)
STEREO 0.015 0.9932 0.8395 0.4452 1.9
FUSE 0.031 0.9734 1.066 0.8807 0.03
FUMI 0.015 0.9933 0.806 0.44671 26.9
Naive 0.065 0.8823 1.228 1.7136 0.006

The second set of experiments examines the case where the
degradation model from super-resolution to HSI is not accurately
known. In particular we consider a scenario where Y H is produced
by Y S after 9 × 9 Gaussian blurring and downsampling, but the
baseline algorithms falsely assume 9×9 or 11×11 averaging-based
blurring. We implement blind STEREO with the formulation in
(3), initialized by the CPD of Y M for A, B, C̃. The factors
Ã, B̃ are initialized by averaging every 4 non-overlapping rows
of A, B respectively. Table 3 and figure 2 show the performance
of the algorithms. One can see that the proposed method markedly
outperforms the baselines in every accuracy metric, which shows
that the method is really robust to model mismatch.

Table 3: Performance of the algorithms when the spatial degradation
model is not accurately known.

Algorithm NMSE CC SAM ERGAS runtime (min)
blind STEREO 0.018 0.9909 0.9481 0. 5044 1.6
FUSE (9× 9) 0.032 0.9714 1.067 0.9000 0.03
FUSE (11× 11) 0.033 0.9700 1.067 0.9154 0.03
FUMI (9× 9) 0.039 0.96522 1.5343 1.0165 14.8
FUMI (11× 11) 0.057 0.9380 2.1788 1.4601 15.2

Naive 0.065 0.8823 1.228 1.714 0.006
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Fig. 2: Cuprite Reconstruction, 966nm band

5. CONCLUSION

In this work, we proposed a new coupled tensor factorization based
framework for the HSI-MSI fusion problem. Compared to the
popular approaches that are mostly based on coupled matrix factor-
ization, the proposed framework enjoys several favorable features:
The method can provably identify the super-resolution tensor under
realistic conditions, and is also friendly for algorithm design. In
addition, this framework can easily accommodate scenarios where
the spatial degradation model is unclear or inaccurately estimated,
which is often the case in practice. Simulations using the AVIRIS
Curpite image data show that the proposed method is effective and
efficient in fusing HSI and MSI under different scenarios.

3194



6. REFERENCES

[1] L. Wald, Data fusion: definitions and architectures: fusion of images
of different spatial resolutions. Presses des MINES, 2002.

[2] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet,
J. Chanussot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi,
M. Simoes et al., “Hyperspectral pansharpening: A review,” IEEE Geo-
science and remote sensing magazine, vol. 3, no. 3, pp. 27–46, 2015.

[3] M. Simões, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A con-
vex formulation for hyperspectral image superresolution via subspace-
based regularization,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 6, pp. 3373–3388, 2015.

[4] N. Yokoya, T. Yairi, and A. Iwasaki, “Coupled nonnegative matrix fac-
torization unmixing for hyperspectral and multispectral data fusion,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 2,
pp. 528–537, 2012.

[5] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Fast fusion of multi-band
images based on solving a sylvester equation,” IEEE Transactions on
Image Processing, vol. 24, no. 11, pp. 4109–4121, 2015.

[6] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, “Hyper-
spectral and multispectral image fusion based on a sparse representa-
tion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53,
no. 7, pp. 3658–3668, 2015.

[7] Q. Wei, J. Bioucas-Dias, N. Dobigeon, J.-Y. Tourneret, M. Chen, and
S. Godsill, “Multiband image fusion based on spectral unmixing,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12,
pp. 7236–7249, 2016.

[8] M. A. Veganzones, M. Simoes, G. Licciardi, N. Yokoya, J. M. Bioucas-
Dias, and J. Chanussot, “Hyperspectral super-resolution of locally low
rank images from complementary multisource data,” IEEE Transac-
tions on Image Processing, vol. 25, no. 1, pp. 274–288, 2016.

[9] E. Wycoff, T.-H. Chan, K. Jia, W.-K. Ma, and Y. Ma, “A non-negative
sparse promoting algorithm for high resolution hyperspectral imaging,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on. IEEE, 2013, pp. 1409–1413.

[10] C. Lanaras, E. Baltsavias, and K. Schindler, “Hyperspectral super-
resolution by coupled spectral unmixing,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 3586–3594.

[11] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Pa-
palexakis, and C. Faloutsos, “Tensor decomposition for signal process-
ing and machine learning,” IEEE Transactions on Signal Processing,
vol. 65, no. 13, pp. 3551–3582, 2017.

[12] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. ACM, 2013, pp. 665–674.

[13] W. K. Ma, J. M. Bioucas-Dias, T. H. Chan, N. Gillis, P. Gader, A. J.
Plaza, A. Ambikapathi, and C. Y. Chi, “A signal processing perspec-
tive on hyperspectral unmixing: Insights from remote sensing,” IEEE
Signal Processing Magazine, vol. 31, no. 1, pp. 67–81, Jan 2014.

[14] L. Chiantini and G. Ottaviani, “On generic identifiability of 3-tensors
of small rank,” SIAM Journal on Matrix Analysis and Applications,
vol. 33, no. 3, pp. 1018–1037, 2012.

[15] X. Fu, K. Huang, B. Yang, W.-K. Ma, and N. D. Sidiropoulos, “Ro-
bust volume minimization-based matrix factorization for remote sens-
ing and document clustering,” IEEE Transactions on Signal Processing,
vol. 64, no. 23, pp. 6254–6268, 2016.

[16] X. Fu, K. Huang, and N. D. Sidiropoulos, “On identifiability of non-
negative matrix factorization,” arXiv preprint arXiv:1709.00614, 2017.

[17] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[18] G. Swayze, R. N. Clark, F. Kruse, S. Sutley, and A. Gallagher,
“Ground-truthing aviris mineral mapping at cuprite, nevada,” 1992.

[19] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of
different spatial resolutions: Assessing the quality of resulting images,”
Photogrammetric Engineering and Remote Sensing, vol. 63, pp. 691–
699, 1997.

[20] B. L. Markham, J. C. Storey, D. L. Williams, and J. R. Irons, “Landsat
sensor performance: history and current status,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 42, no. 12, pp. 2691–2694, 2004.

[21] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, M. Selva, and C. Chen,
“25 years of pansharpening: a critical review and new developments,”
Signal and Image Processing for Remote Sensing, pp. 533–548, 2011.

[22] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer,
“Tensorlab v3. 0, march 2016,” URL: http://www. tensorlab. net.

3195


