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ABSTRACT

This paper considers the problem of sparse support recov-
ery in Multiple Measurement Vector (MMV) models, where
the support size (K) can exceed the dimension (M ) of indi-
vidual measurement vectors. Existing results in this regime
mostly establish asymptotic performance guarantees, where
the number of measurement vectors L → ∞. In this pa-
per, we develop non-asymptotic guarantees (finite L), and
demonstrate that it is possible to recover supports of sizeK =
O(M2) provided the sparse signals are statistically uncorre-
lated. In particular, the probability of detecting a wrong sup-
port is shown to approach zero exponentially fast in L even
when K > M , for appropriately designed measurement ma-
trices. Our analysis is based on a simple least squares estima-
tion of signal powers, followed by hard thresholding to detect
the support.

Index Terms— Joint Support Recovery, Multiple Mea-
surement Vectors, Khatri-Rao Product, Sparse Bayesian
Learning, Correlation.

1. INTRODUCTION

Consider a set of jointly sparse signals x[l] ∈ FN (for l =
0, · · · , L − 1)1 whose nonzero elements are indexed by the
set S = {s1, · · · , sK}, i.e.,

xi[l] 6= 0⇔ i ∈ S.

The goal in sparse support recovery is to identify S from the
measurements

y[l] = Ax[l] + w[l]. (1)

where A ∈ FM×N , x[l] ∈ FN , w[l] ∈ FM . This prob-
lem naturally arises in many signal processing applications,
especially when the support itself contains meaningful phys-
ical information. They include Directions-of-Arrival of far
field electromagnetic waves [1, 2], detection of unoccupied

This work was supported in parts by the NSF CAREER award (ECCS
1553954), and the University of California, San Diego.

1Depending on the context F can be the field of real R or complex C
numbers.

frequency bands in cognitive radio [3], compressed DNA mi-
croarrays for bio-sensing [4].

The problem of sparse support recovery (with or without
estimating x[l]) has been widely studied in compressed sens-
ing literature [5, 6, 7, 8, 9, 10]. Both necessary and sufficient
conditions for support recovery have been established for sin-
gle measurement vector (L = 1) as well as multiple measure-
ment vector (MMV) models (L > 1). These results indicate
that in SMV models M = Ω(K logN) measurements are
necessary and sufficient for accurate support detection. How-
ever, a common feature of most of these results is that the
sparse signal x[l] is modeled as a (unknown) deterministic
quantity and statistical priors on x[l] (such as its correlation
structure) are not fully exploited. In contrast, Tang et al. [11]
considers a MMV model with statistically uncorrelated sig-
nals and derives both upper and lower bounds on the proba-
bility of error. Although the (non zero) signals are assumed
to be uncorrelated, the derivation of the upper bound does not
fully exploit this structure. Hence, their results do not guar-
antee successful support detection when K > M .

In recent work [12], using the same signal model as [11],
we showed that it is possible to recover supports of size K =
O(M2) for appropriate measurement matrices, as long as the
non-zero signals have equal power and the detector knows
K. In this paper, we relax both conditions and show that is
possible to recover supports of size K = O(M2) even for
sources with unequal power, and without the knowledge of
K. Unlike [11, 12], we do not impose specific distribution
on the measurements and only assume them to be bounded
real-valued random variables. Using a simple least squares
estimate of the source powers, followed by hard-thresholding,
we are able to recover sparse supports of size K > M , with
overwhelming probability (with respect to L).

2. SIGNAL MODEL

In this paper, we consider the MMV model introduced in (1)
with L measurement vectors. We make the following statisti-
cal assumptions on the signal and noise:

(A1) Non-zero elements of the signal x[l] are un-
correlated, i.e. E(x[l]x[l]H) = P, where P =
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diag(p1, · · · , pN ) is a diagonal matrix, and {x[l]}L−1l=0

are independent and identically distributed (i.i.d.) ran-
dom vectors. Moreover pi = 0, i 6= S, consistent with
the fact that the L vectors x[l], 0 ≤ l ≤ L − 1 share a
common support S.

(A2) Signal x[l] and noise w[l] are uncorrelated, i.e,
E(x[l]w[l]H) = 0.

(A3) The noise w is white, i.e. E(w[l]w[l]H) = σ2I,
and {w[l]}L−1l=0 are i.i.d. random variables. We assume
σ2 is known.

(A4) The signal and noise are bounded random vari-
ables, i.e., ‖x[l]‖2 ≤ Cx, ‖w[l]‖2 ≤ Cw, where
Cx, Cw > 0 are positive constants.

(A5) The measurement matrix A satisfies rank(A∗ �
A) = N .

Assumptions (A1-A3) are typical in the context of Sparse
Bayesian Learning (SBL) [13], line spectrum estimation and
so forth. However, unlike SBL, (A4) further enforces the sig-
nal and noise to be bounded random variables. This assump-
tion simplifies the error analysis of our proposed detector in
the regime K > M , and ensures that the error decays ex-
ponentially fast in L. Unlike SBL, we do not consider any
particular distribution for the measurements. The following
remark immediately follows from the assumption (A4):

Remark 1. Under assumption (A4), we have ‖y‖ ≤ Cy

Cy = σmax(A)Cx + Cw (2)

where σmax(A) denotes the maximum singular value of the
measurement matrix A.

Remark 2. Based on assumptions (A1-A3), one can write
the covariance matrix of the measurement vectors as

R := E(y[l]y[l]H) = APAH + σ2I.

The vectorized form of the covariance matrix can be writ-
ten as

vec(R) = (A∗ �A)p + σ2 vec(I)

where p = [p1, · · · , pN ]T is a sparse vector with support
S. The goal of support recovery in MMV models is to de-
tect the common support S from the measurements Y =
[y[0], · · · ,y[L− 1]]. Let ψ(Y) denote a detector that returns
a candidate support. The probability of detecting a wrong
support, given S is the true support, can be expressed as

pe|S = P(ψ(Y) 6= S|S)

It has been empirically demonstrated that SBL is capable of
detecting supports of size larger than M , but no theoretical

guarantees exist. In this paper, we propose a simple detector
ψLS(Y) (that does not know the support sizeK), and compute
upper bounds on the probability of error pe|S of this detector.
Before presenting our results, we review existing results that
consider support recovery in the regime K > M but only
provide partial guarantees.

3. REVIEW OF CORRELATION-AWARE
TECHNIQUES FOR RECOVERING SUPPORTS OF

SIZE K = O(M2)

In compressed sensing, existing guarantees for sparse support
recovery are mostly relevant in the regime K < M . The
only algorithms, which, under certain restrictive assumptions,
theoretically or experimentally show possibility of recovering
supports of size K > M , are Sparse Bayesian Learning [13,
14], and Correlation-Aware LASSO (Co-LASSO) [15]. We
now briefly review these results and elaborate more on the
role of correlation awareness in recovering supports of size
K = O(M2).

1. Sparse Bayesian Learning: The authors in [14] show
that the MSBL algorithm is capable of recovering sup-
ports of size K > M under the following assumptions:
1) The measurements are assumed to be noiseless. 2)
Non-zero rows of X = [x[0],x[1], · · · ,x[L − 1]] are
orthogonal. Although these conditions may not be sat-
isfied in practice, their numerical results show that even
under a noisy setting MSBL is able to recover supports
of size K > M .

2. Correlation-Aware Support Recovery: In our earlier
work in [15], we showed that if we have access to
the exact covariance matrix R (which happens when
L → ∞), then, under assumptions (A1-A3) and
(A5), it is possible to recover sparse supports of size
K = O(M2), by solving the following `1 minimiza-
tion problem:

min
p≥0
‖p‖1 subject to (A∗ �A)p = vec(R)

For finite L, we can only compute an estimate of R.
In this case, we proposed a variation of LASSO [15]
namely (Co-LASSO) for joint support recovery, and
showed that it can recover S as long asK < 1

2 (1+ 1
µ2 ).

Here µ ≤ 1 is the mutual coherence of A defined as

µ = max
i 6=j

|aHi aj |
‖ai‖2‖aj‖2

This result showed that by merely exploiting the lack
of correlation between sparse signals, one can recover
larger supports compared to traditional coherence-
based guarantees in compressed sensing (which require
K < 1

2 (1 + 1
µ )) [16]. However, in presence of finite L,

these guarantees are rather weak and only apply in the
regime K < M .
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3. Existence of Cramér Rao Bound, when N = O(M2):
In past work [17], we showed that the Cramér Rao
Bound (CRB) for estimating source powers in a MMV
model (1) exist, even when K = O(M2), as long as
rank(A � A) = N . This condition is obeyed by al-
most all choices of A if N ≤ M2+M

2 . In this setting,
as L→∞, the CRB goes to zero at the rate 1/L. Since
Maximum Likelihood (ML) Estimates asymptotically
attain the CRB, this automatically shows that MSBL
can recover the vector p as L → ∞ since it solves a
maximum likelihood problem.

Most of aforementioned results provide asymptotic guaran-
tees (i.e. when L → ∞). No non-asymptotic guarantees cur-
rently exist for support recovery in the regime K = O(M2)
that can ensure pe|S decays exponentially fast in L. In the
next section, we will address this issue by proposing a detec-
tor which is based on solving a simple least squares problem
followed by a thresholding step.

4. A LEAST SQUARES THRESHOLDING BASED
SUPPORT DETECTOR

We propose the following simple detector based on least-
squares method:

ψ(Y; τ,A, σ2) = {i|p̂i ≥ τ, p̂ = φ(Y;A, σ2)} (3)

where τ is a predefined threshold, and

φ(Y;A, σ2) = (A∗ �A)† vec(R̂− σ2I) (4)

is the least square estimator of the vector of source powers p,
where R̂ denotes the sample covariance matrix, defined as

R̂ =
1

L

L∑
l=1

y[l]y[l]H (5)

Inspite of its simplicity, we will now show that this detector
can recover supports of sizeK = O(M2) with overwhelming
probability. 2 We first state some preliminary lemmas:

Lemma 1. The estimator (4) is unbiased, i.e E(p̂) = p.

Proof. Let p̂ = φ(Y;A, σ2). We have

E(p̂) = E((A∗ �A)† vec(R̂− σ2I))

= (A∗ �A)† vec(E(R̂)− σ2I))

= (A∗ �A)† vec(R− σ2I)) (6)

= (A∗ �A)† vec(APAH)

= (A∗ �A)†(A∗ �A)p

= p (7)

2Although the MMV model is underdetermined (N > M ), under as-
sumption (A5), A∗ �A is tall and has full column-rank. Hence it is reason-
able to estimate p using least squares method. Assumption (A5) continues to
hold in the regime M < N < (M2 +M)/2 for almost all A ∈ RM×N ,
and it serves as a necessary condition for existence of CRB [15, 17].

where (6) follows from the fact that E(R̂) = 1
L

∑L
l=1 E(y[l]y[l]H) =

R, and (7) holds due to assumption (A5).

Lemma 2. The estimator (4) can be also be written as

p̂i =
1

L

L−1∑
l=0

N∑
j=1

bij(|aHj y[l]|2 − σ2‖aj‖2) (8)

where B := [bij ] =
(
(A∗ �A)H(A∗ �A)

)−1
.

Proof. Following the definition of matrix B, one can write
the estimator (3) as

p̂ = B(A∗ �A)H vec(R̂− σ2I)

= BJH(A∗ ⊗A)H vec(R̂− σ2I)

= BJH vec(AH(R̂− σ2I)A)

= B diag(AH(R̂− σ2I)A) (9)

=
1

L

L−1∑
l=0

Bdiag(AH(y[l]y[l]H − σ2I)A) (10)

where J ∈ RN2×N is an appropriate column selection matrix,
diag(X) (with matrix argument X) returns a column vector
containing the diagonal entries of the matrix X. The equation
(9) follows by exploiting the structure of the matrix J, and
(10) follows from the definition of R̂ in (5) and changing the
order of summations.

To facilitate our analysis, for the rest of this paper, we will
further assume that F = R, i.e., all random variables and the
measurement matrix A are real valued.

Lemma 3. Given any i ∈ {1, · · · , N} and η > 0, it holds
that

P(|p̂i − pi| > η) ≤ 2e−βiLη
2

where βi is a constant (specified in the proof).

Proof. Using the result of Lemma 2, we can write

p̂i =
1

L

L−1∑
l=0

(z
(i)
l − êi)

where êi =
∑N
j=1 bijσ

2‖aj‖2, and

z
(i)
l =

N∑
j=1

bij |aHj y[l]|2.
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Next, we show that each |z(i)l | is bounded. We have

|z(i)l | ≤
N∑
j=1

|bij ||aHj y[l]|2 (11)

≤
N∑
j=1

|bij |‖aj‖2‖y[l]‖2 (12)

≤ C2
y

N∑
j=1

|bij |‖aj‖2 := C(i)
z (13)

From Lemma 1 we know that E(p̂i) = pi. Therefore, using
Hoeffding Inequality [18], we obtain

P(|p̂i − pi| > η) ≤ 2e
− Lη2

2(C
(i)
z )2

which concludes the proof by choosing βi = 1

2(C
(i)
z )2

.

Equipped with the above lemmas, we are now ready to
state our main result:

Theorem 1. Under assumptions (A1-A5), the probability of
error pe|S of the detector (3) with τ = pmin

2 is upper bounded
as

pe|S ≤ e−βp
2
minL/4+log(2N))

where pmin := min
i∈S

pi, and β = min
i

1

2(C
(i)
z )2

, with C(i)
z given

by (13).

Proof. For the detector specified by (3), consider any thresh-
old τ such that τ < pmin. In this case, the probability of
detecting a wrong support (given S is the true support) can be
written as

pe|S = P(ψ(Y; τ,A, σ2) 6= S|S)

= P

(⋃
i∈S
{p̂i < τ} ∪

⋃
i/∈S

{p̂i > τ}

)
(14)

≤
∑
i∈S

P(p̂i < τ) +
∑
i/∈S

P(p̂i > τ) (15)

≤
∑
i∈S

P(|p̂i − pi| > pi − τ) +
∑
i/∈S

P(|p̂i| > τ) (16)

where (15) follows from the union bound, and (16) follows
from the fact that p̂i ≤ τ is equivalent to p̂i − pi ≤ τ − pi,
which implies |p̂i − pi| ≥ pi − τ 3 Using Lemma 3, we have

pe|S ≤
∑
i∈S

2e−βiL(pi−τ)
2

+
∑
i/∈S

2e−βiLτ
2

≤ 2Ke−βL(pmin−τ)2 + 2(N −K)e−βLτ
2

where β = mini βi. Substituting τ = pmin

2 concludes the
proof.

3Since τ < pmin, we have τ − pi < 0 for all i ∈ S

5. SIMULATIONS

We now numerically validate that it is possible to obtain ex-
ponentially decaying probability of error for support recov-
ery in the regime K > M . To this end, we consider two
algorithms: i) MSBL [14], and ii) the proposed detector in
(3). We consider a fixed measurement matrix A ∈ RM×N ,
M = 7, N = 21. The ith nonzero element of x[l] is cho-
sen from the uniform distribution over [−

√
3pi,
√

3pi] (which
will ensure that E(x2i [l]) = pi). The elements of the noise
vector wi[l] are i.i.d. and uniformly distributed in the range
[−
√

3σ,
√

3σ]. We let pi = 1, for i ∈ S, and σ = 0.1.
For the proposed least square detector, we set the threshold
τ = 1

2 . We use the same threshold τ to detect the support
using MSBL. Fig. 1 shows the probability of error of both
detectors as a function of L (log scale), for both K > M and
K < M . It is clear that the slope for both detectors is linear
in L, indicating an exponential decay of pe|S with respect to
L. It can also be seen that MSBL has a better error exponent
compared to the least squares detector, in both the regimes.
It will be of interest in future to analyze the performance of
MSBL, and characterize this error exponent.
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(a) K = 17 > M,N = 21
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Fig. 1. Probability of error of both detectors (“LS” denotes
the proposed least squares detector, and “SBL” denotes the
detector based on Sparse Bayesian Learning algorithm.)

6. CONCLUSION

In this paper, we considered the problem of joint sup-
port recovery of sparse signals in multiple measurement
vector (MMV) models. For the first time, we provided
non-asymptotic guarantees for recovering supports of size
K = O(M2), where M is the size of each measurement vec-
tor. Our detector is based on a simple least square estimator
of source powers, followed by a hard thresholding operation.
Assuming the sparse signals to be statistically uncorrelated
bounded random variables, we can ensure that the probability
of detecting a wrong support approaches zero exponentially
fast in L even when K > M . This result holds for appro-
priately designed measurement matrices whose Khatri-Rao
products satisfy certain rank constraints.
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