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ABSTRACT
Steady State Visual Evoked Potentials (SSVEPs) have

been the most commonly utilized Brain Computer Interface
(BCI) modality due to their relatively high signal-to-noise
ratio, high information transfer rates, and minimum train-
ing prerequisites. Up to date Canonical Correlation Anal-
ysis (CCA) and its extensions have been widely utilized
for SSVEP target frequency identification. However, reli-
able and robust SSVEP identification performance is still a
challenge, particularly for portable BCI systems because of
signal contamination factors, portable visual stimuli limita-
tions, subject-to-subject variation, and the mental, emotional
and physiological state of subjects. As such, we propose
an innovative partition-based feature extraction method that
entails partitioning the score spaces of CCA and Power Spec-
tral Density Analysis (PSDA) in three cases, extract effi-
cient descriptors from each partition, then concatenate the
extracted measures to generate more discriminative fusion
spaces. Moreover, we investigate transforming the fusion
spaces to lower dimensions utilizing Linear Discriminant
Analysis (LDA). Our experimental results report that our
proposed method enhances the identification performance of
our baseline system (i.e. CCA) from 63% to 78%. The per-
formance is further improved to 98% after the discriminative
transformation utilizing LDA.

Index Terms— Brain-Computer Interface (BCI), Steady
State Visual Evoked Potential (SSVEP), Feature Extraction,
Fusion, Dimensionality Reduction

1. INTRODUCTION

Brain Computer Interface (BCI) systems provide direct
communication channels between the users’ brains and ex-
ternal devices [1]. Since the inception of BCI research in
1973 by Jacques J. Vidal, BCI technology has grown rapidly
as a result of the scientific advancements in electronics, neu-
rophysiology, and the computer science field in general [2].
In BCI paradigms, users think of a mental task that character-
izes a specific command to be communicated. Thus, the BCI

system receives the brain modulation of the user employing
Electroencephalography (EEG) signal and utilizes the signal
to recognize and communicate the desired commands [3]. In
recent years, various BCI modalities have been proposed, and
investigated, such as, selective sensation (SS) [4], steady state
somatosensory evoked potentials (SSSEPs) [5], steady-state
visual evoked potentials (SSVEPs) [6], P300 evoked poten-
tials [7], and sensory motor rhythm [8]. However, SSVEPs
are the most commonly utilized modality in BCI research due
to their relatively high information transfer rates (ITR), high
signal-to-noise ratio, and very low training requirements [9].
SSVEP is a phase-locked brain response that is evoked when
a user’s attention is focused on a flickering visual stimulus,
such as flashing icons [10]. Thus, an SSVEP response is gen-
erated as a result of multiple neurons producing a signal that
is similar to the visual stimulus’s frequency, and is sustained
throughout the fixation period.

Numerous studies proposed various SSVEP target iden-
tification techniques. Such studies include, but are not lim-
ited to, CCA [11], PSDA [12], Multiway CCA [13], Multi
set CCA [14], task-related component analysis (TRCA) [15],
and common and individual feature extraction (CIFE) [16].

In this paper, we investigate enhancing the SSVEP identi-
fication performance for portable BCI applications. As such,
we propose combining the CCA and PSDA features at the
score level via partitioning their score spaces into three dif-
ferent partitioning cases, extracting effective descriptors from
each partition, and finally generate a more discriminative fu-
sion space by combing the extracted measures. Subsequently,
we transform each fusion space from each partitioning case to
lower dimensions using Linear Discriminant Analysis (LDA).

2. METHODOLOGY

Figure 1 illustrates the block diagram of the proposed
method. After filtering the signal, we partition the score
spaces of CCA and PSDA in 3 different cases to evaluate the
fusion spaces constructed from each case. Then we utilize
LDA to discriminatively transform the fusion spaces to lower
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Fig. 1. Block Diagram of our proposed identification system

dimensions.

2.1. Experimental Setup and Data Collection

Our portable BCI system is comprised of the wearable
Cognionics Bluetooth EEG device, and an Android tablet that
serves as visual stimuli. In this study, 4 target frequencies
were employed; 10Hz, 12Hz, 15Hz, and 8.5Hz. Ten healthy
subjects, aged between 20 and 30 years of age, were recruited
in this experiment. Our data acquisition was approved by the
University of Michigan Institutional Review Board under the
study ID: HUM00100788. Subjects were seated on comfort-
able chairs with a distance of ∼20 inches from the visual stim-
uli. The task involved focusing on one icon to record 10 suc-
cessful icon selections (i.e. calls) per each target frequency.
However, all subjects required approximately 75 calls to ob-
tain the successful calls for all target frequencies. EEG data
was collected utilizing 8 channels with a sampling frequency
of 250Hz. The designated channels were PO3, POz, PO4,
PO7, O1, Oz, O2 and PO8 (See Figure 2).

Fig. 2. portable BCI setup and designated channel locations

2.2. CCA and PSDA Score Space Partitioning

In addition to the drawbacks and challenges BCI systems
face today, the performance of our portable BCI system is im-
pacted by the imprecise generation of the SSVEP paradigm
due to the insufficient screen refresh rate, and the recurrent
interruptions of the Android operating system of our tablet-
based visual stimuli. The impact of this limitation can be ob-
served in Figure 4. From Figure 4 we note that the peaks
of the SSVEP responses are not occurring precisely on the
intended target frequencies. Moreover, we also hypothesize
that there are subject-specific information and individual dif-
ferences due to the imprecise SSSVEP paradigm generation
challenge. As such, to mitigate the aftermath of this chal-
lenge and alleviate the impact of the subject variation and the
effect of EEG signal contamination to some extent, we exploit
the discriminative and analogous information extracted from
CCA and PSDA utilizing three partitioning cases that span
the frequency spectrum from 7Hz to 17Hz (See Figure 3).

P1 P3 P5 P7 P9

7Hz 8Hz 9Hz 9.5Hz 10.5Hz 11.5Hz 12.5Hz 14.5Hz 15.5Hz 16.5Hz 17Hz

8.5Hz 10Hz 12Hz 15Hz

P8P2 P4 P6

Fig. 3. CCA and PSDA score space partitioning

The first case entails utilizing the four partitions that en-
capsulate the target frequencies (i.e. P2, P4, P6, and P8).
The second partitioning case involves employing the five par-
titions that encompass the non-target frequencies (i.e. P1, P3,
P5, P7, P9). The third partitioning case on the other hand in-
corporates the previous partitioning cases and utilizes the nine
target and non-target frequency partitions.

The underlying concept of the partitioning scheme is to
evaluate the discriminative capabilities of the fusion spaces
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Fig. 4. Effect of imprecise screen refresh rate on the identification task

constructed from each partitioning case.

2.3. Partition-Based Feature Extraction

In this study, we extract four descriptors from CCA
(Power, Mean, Standard Deviation, and Entropy), and two
descriptors from PSDA (Mean, and Standard Deviation).
PSDA inherently generates the power scores of the signal,
which eliminated the need to extract it as a feature. However,
because those power scores were infinitesimal in magnitude,
extracting viable entropy measures was hampered. Sub-
sequently, from the first case we construct a twenty-four
dimensional fusion space (4 features x 4 partitions from CCA
and 2 features x 4 partitions from PSDA), from the second
case we construct a thirty-dimensional fusion space (4 fea-
tures x 5 partitions from CCA and 2 features x 5 partitions
from PSDA), and from the third case we generate a fifty-four
dimensional fusion space (4 features x 9 partitions from CCA
and 2 features x 9 partitions from PSDA) (See Figure 1).

2.4. Discriminative Fusion Space Transformation

LDA, which is a linear and supervised dimensionality
reduction method, projects a dataset on a lower-dimensional
space while preserving as much of the information about the
separation between classes as possible. Furthermore, LDA
seeks to find the linear discriminants, which are the axes that
maximize linear class separability using the within-class scat-
ter and the between-class scatter matrices. The within-class
scatter and between-class scatter matrices are calculated as
follows:

Within-class scatter matrix

Sw =

c∑
i=1

nj∑
j=1

(Yj −Mi)(Yj −Mi)
T (1)

Between-class scatter matrix

Sb =

c∑
i=1

(Mi −M)(Mi −M)T (2)

LDA then generates a new transformation space where
the within-class scatter is minimized and the between-class
scatter is maximized:

J(U) = UTSbU/U
TSwU (3)

Thus, the projection matrix is:

Y = UT x (4)

3. RESULTS

In this analysis, we evaluate the effect of fusion spaces,
generated from each partitioning case, on the identification
performance. Hence, to accurately assess the models’ perfor-
mances we employ the leave-one-out Cross Validation, where
we exclude one sample from the training set and utilize it for
testing iteratively per each subject. For classification, we em-
ploy Decision Tree, Support Vector Machine (SVM) and K-
Nearest Neighbor with K=1.

3.1. Feature Space Fusion

Table 1 illustrates the results of our proposed fusion
method with the three partitioning cases. While our CCA-
based system’s average accuracy is 63% and PSDA’s average
accuracy is only 37%, the fusion space improves those ac-
curacies to 75%. The first partitioning case further improves
the accuracy to 78% utilizing SVM. However, partitioning
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Table 1. CCA and PSDA fusion accuracies

Subject CCA PSDA Target Frequency Partitions Non-Target Frequency Partitions Target + Non-Target

Decision Tree SVM KNN Decision Tree SVM KNN Decision Tree SVM KNN
1 86% 67% 96% 96% 98% 81% 75% 71% 81% 96% 83%
2 77% 83% 86% 84% 87% 57% 44% 36% 82% 86% 77%
3 40% 26% 60% 42% 34% 49% 43% 45% 37% 47% 52%
4 59% 19% 77% 85% 78% 31% 54% 44% 75% 79% 59%
5 67% 41% 89% 76% 69% 31% 42% 32% 73% 71% 68%
6 55% 35% 88% 88% 75% 34% 45% 29% 86% 80% 71%
7 62% 29% 63% 80% 68% 42% 53% 46% 63% 74% 63%
8 71% 39% 71% 83% 75% 40% 49% 49% 76% 76% 68%
9 47% 17% 59% 81% 73% 34% 42% 40% 60% 79% 63%

10 61% 17% 49% 62% 55% 56% 44% 36% 49% 62% 41%
Avg 63% 37% 74% 78% 71% 46% 49% 43% 68% 75% 65%

the non-target frequencies yielded significantly lower identi-
fication accuracies. Thus, from the first and third partitioning
cases we conclude that the effects of noise and different EEG
contaminant factors are alleviated with our proposed fusion
method to some extent.

3.2. Discriminative Fusion Space Transformation

To improve the performance of our BCI system, mitigate
the effect of redundancy and avoid the curse of dimensional-
ity, the high dimensional fusion spaces were transformed to
lower dimensional spaces utilizing LDA (See Table 2). Ta-
ble 2 reports that identification accuracies significantly im-
proved from 78% to 90% with the twenty-four dimensional
fusion space (case 1), and further improved to 98% utilizing
the fifty-four dimensional fusion space (case 3). As such, we
conclude that augmenting the non-target frequency partitions
on the target frequency partitions improves the identification
performance.

Table 2. LDA accuracies
Subject CCA PSDA Target Frequency Partitions Target + Non-Target

Decision Tree SVM KNN Decision Tree SVM KNN
1 86% 67% 100% 100% 100% 94% 96% 94%
2 77% 83% 94% 97% 97% 97% 100% 100%
3 40% 26% 58% 71% 57% 91% 96% 93%
4 59% 19% 92% 94% 88% 99% 97% 99%
5 67% 41% 89% 92% 94% 92% 98% 98%
6 55% 35% 94% 92% 96% 96% 100% 100%
7 62% 29% 90% 86% 85% 91% 94% 93%
8 71% 39% 93% 90% 93% 100% 100% 100%
9 47% 17% 76% 89% 80% 95% 99% 100%

10 61% 17% 89% 87% 73% 100% 99% 100%
Avg 63% 37% 88% 90% 86% 96% 98% 98%

LDA’s success is attributed to its ability to generate a lin-
ear mapping that maximizes class separability in the low-
dimensional projection of the data. However, LDA assumes
the dataset is normally distributed, and the covariance matri-
ces of the various classes are the same. Thus, a log transfor-
mation of the PSDA power scores was performed to assess
LDA’s performance after the normalization concluding a very
slight difference in performance (See Figure 5).
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Fig. 5. LDA’s performance before and after the Log transfor-
mation

4. CONCLUSION

Due to the advantages SSVEPs offer, they have been
widely employed in BCI research. However, robust SSVEP
identification performance is still an issue. While various
studies introduced numerous methods to enhance the SSVEP
identification performance, we proposed and investigated
our partition-based feature extraction method, which in-
volves partitioning CCA and PSDA score spaces, extracting
information from each partition and concatenating the ex-
tracted measures in fusion spaces. Our experimental results
demonstrated a performance improvement from 63% to 78%
achieved by the fusion space from the first partitioning case.
The accuracy is further improved to 98% utilizing LDA.
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