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ABSTRACT 
 

We present Edge-aware Context Encoder (E-CE): an image 

inpainting model which takes scene structure and context into 

account. Unlike previous CE which predicts the missing 

regions using context from entire image, E-CE learns to 

recover the texture according to edge structures, attempting 

to avoid context blending across boundaries. In our approach, 

edges are extracted from the masked image, and completed 

by a full-convolutional network. The completed edge map 

together with the original masked image are then input into 

the modified CE network to predict the missing region. The 

experiments demonstrate that E-CE can generate images with 

better shapes and structures than CE.  
 

Index Terms— image inpainting, edge extraction, 

convolutional network, complex scene 
 

1. INTRODUCTION 
 

As being firstly raised in [1] for art restoration, image 

inpainting is used to refer to the process of restoring missing 

or damaged areas in an image. Classical inpainting methods 

are often based on local or non-local information to recover 

images [2-5], which are commonly assumed to be insufficient 

when missing region is large. Recently, Context Encoder (CE) 

[6] has shown promise as prediction model of high-level 

context for completing images with large holes. A flurry of 

work has proposed improvements over original CE, such as 

adding pixel domain constraints [7,8], adding feature domain 

constraints [9-11], and adding post-processing to deal with 

high-resolution [12], image blending [13] and image 

restoration [14].  

While these approaches can predict correct context and 

generate natural look missing region for some datasets with 

specific image contents, such as faces or streets, complex 

natural scenes are still challenging. For instance, the objects 

in these images tend to be deformed or mixed with the 

surrounding environment, and do not look realistic or 

recognizable (Fig. 1 (b)). 

One fundamental limitation of these methods is that the 

network attempt to understand the context of the entire image,  

   
(a) Masked image             (b) Context Encoder 

    
       (c) Binary edges            (d) Conditional on edges 

Fig. 1. Visual illustration of the task. (a) input masked image; (b) 

inpainting result from CE; (c) binary edges; (d) edge-aware 

inpainting result. 
 

lacking the ability to handle the environmental complexity. 

Yet, natural images contain composite structures and textures, 

and the textures are usually regions with homogenous 

patterns bounded by structures. Uniformed processing them 

results in clutter structures and mixing textures.   

To handle composite textures and structures, we propose 

an Edge-aware Context Encoder (E-CE) model to predict 

missing region. Edge maps can keep the major structures 

while removing the weak correlation between different 

textures, thus can be used as a constraint in the texture 

prediction of missing region. During the inpainting process, 

we firstly develop a method to draw rough edges in the 

missing region based on the edges extracted from known area. 

Then the entire edge map is input together with the known 

region to predict the textures in the missing region. The 

proposed approach is naturally consistent with the order of 

drawing by a painter. Fig. 1 (c) and (d) represent the edges 

and edge-aware inpainting result of Fig. 1 (a) respectively. 
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Fig. 2. Framework of edge-aware context encoder for image inpainting. 

 

We evaluate our approach on two datasets: 137K Amazon 

Handbag images [15] and 100K-ImageNet [16]. The results 

show that E-CE is able to correctly predict structures and 

shape of objects in the missing region.  

 

2. EDGE-AWARE IMAGE INPAINTING STRATEGY 
 

In this section, we describe the proposed model for image 

inpainting. Fig. 2 shows the proposed framework that consists 

of an edge map generation part and a CE based inpainting part. 

Given a masked image, the edge map generation part extracts 

dominant edges from known region, following by an edge 

completion network to obtain a completed edge map. Then 

the edge map together with the masked image is input into a 

modified CE network to fill textures in the missing region. 

The edges provide guidance in the prediction of the textures. 
 

2.1. Generation of edge image 
 

Generation of edge image consists of two steps: edge 

extraction from masked image and completion of edges in the 

missing region.  
 

2.1.1. Edge extraction 

In order to provide boundary and main structures for the 

texture inpainting, we prefer to extract the outlines of objects 

or texture patches rather than fine texture details. Traditional 

Sobel or Canny [17] based method only considers the local 

changes of color, light or gradient. They cannot generate 

satisfactory result in complex environment as the case in our 

study. Therefore, we adopt a recently proposed CNN based 

Holistically-Nested Edge Detection (HED) model [18]. It 

deals with the holistic image in the process, enabling an 

extraction of high-level boundary information.  

In our work, edges are firstly extracted using already 

trained HED model. Then we adopt standard non-maximum 

suppression and edge thinning for the post-processing. 
 

2.1.2. Edge map completion 

Considering that the main purpose of edge completion is to 

recover the connectivity between edges, we adopted a fully 

convolutional network [19]. An overview of the network 

architecture can be seen in Table 1. The input of the 

completion network is a single channel image with a mask, 

and the output is the predicted edges. The network 

architecture follows an encoder-decoder structure, and 

decreases the resolution using strided convolutions to reduce 

the memory usage and computational time. 
 

Table 1. Architecture of the edge completion network. After each 

convolution layer and deconvolution layer, except the last one with 

a tanh function, there are a Batch Normalization layer and a 

Rectified Linear Unit layer. “Outputs” refers to the number of output 

channels for the output of the layer. 

Layer Type Kernel Stride Padding Outputs 

1 conv. 5 × 5 1 × 1 1 × 1 64 

2 conv. 3 × 3 2 × 2 1 × 1 128 

3 conv. 3 × 3 1 × 1 1 × 1 128 

4 conv. 3 × 3 2 × 2 1 × 1 256 

5-12 conv. 3 × 3 1 × 1 1 × 1 256 

13 deconv. 4 × 4 
1

2
×

1

2
 1 × 1 128 

14 conv. 3 × 3 1 × 1 1 × 1 128 

15 conv. 4 × 4 1 × 1 1 × 1 64 

16 conv. 3 × 3 1 × 1 1 × 1 32 

17 output 3 × 3 1 × 1 1 × 1 3 
 

2.2. Inpainting network 
 

The inpainting network is based on the Context Encoder 

network [6]. The completed edge map, along with the masked 

input, is first mapped to hidden representations through the 

encoder. The decoder takes the latent feature representation 

to predict the missing region.  

The inpainting network is trained by regressing to the 

ground truth content of the missing region. Reconstruction 

loss and adversarial loss are used together to handle the 

similarity in the overall structure and naturalness of the 

generated missing region. Rather than taking GAN loss [20], 

we use the Wasserstein GAN (WGAN) loss [21] due to its 

ease of training and good results. For each pair of image (x, 

y), x is the missing region and y is the combination of 

corresponding masked region and the completed edge map. 

The inpainting network F produces a predicted missing 

region 𝐹(𝑦), and D is the adversarial discriminative model. 
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The objective for discriminator is the likelihood whether the 

input is real or predicted one:  

ℒ𝑎 = max 
𝐷∈𝐿

𝔼𝑥∈𝒳[𝐷(𝑥) - 𝐷(𝐹(𝑦))]                 (1) 

where L is the set of 1-Lipschitz functions. 𝒳 represents the 

distributions of real data 𝑥. 
 

3. EXPERIMENTAL RESULTS 
 

We now evaluate the proposed E-CE model for image 

inpainting. The datasets and experimental settings are firstly 

introduced, followed by visualized results.  
 

3.1. Datasets and experimental settings 
 

Datasets. We experiment with images from two datasets: 

137K Amazon Handbag images with 138,767 handbag 

images [15] and 100K-ImageNet [16] with 1,260,000 images 

from 1000 classes. To save computational time in this work, 

we use 100,000 images chosen at random in [6]. In the former 

dataset, the environment is simple and clear. We use this 

dataset to verify whether edges can formalize the shape of the 

completed objects. The latter dataset contains complex 

environment, which is used to test the overall performance of 

the proposed method. Only images from the datasets without 

any of the accompany labels are used. All images are cropped 

and resized to 128×128 with 64×64 region in the center 

masked out. 300 images out of each dataset are removed for 

testing while left are used for training.  

Baselines. We compare our method with both local 

information based approaches and learning based approaches. 

The selected approaches in the former class are total variation 

(TV) approach [3] and Exemplar-Based approach (EB) [22]. 

The first learning based baseline is CE [6]. Due to the reason 

that the discriminators in our method are trained with WGAN 

loss, we also compare our method with the WGAN loss based 

CE implemented (CE-W). 

Implementation details. We implement this network 

using pytorch [23] toolbox. We used batch size 64 in all 

experiments. The training of E-CE is separated into two 

stages. In the first stage, we train the edge completion 

network independently. The network is initialized at random, 

and trained end-to-end with reconstruction loss (L2) and 

adversarial loss. To deal with the edges on the boundaries of 

the mask, we copy the context (by 4px) outside the hole to 

the inner boundary and the filling position are masked out 

again After edge extraction. In the second stage, we train the 

modified CE part for image inpainting combine the masked 

input and the edge map. The training of edge completion 

network and inpainting network follow the training procedure 

proposed in WGAN [21] and apply the RMSProp solver [24]. 

We keep the dimension of the latent vector to 4000, the same 

as used in the original CE. The weights for reconstruction loss 

and adversarial loss are set to 0.99 and 0.01 respectively. 
 

3.2. Results 

The visualized results are shown in Fig. 3 and Fig. 4 for both 

datasets. In general, classical methods (TV, EB) can only 

produce blurred or cracked results in the tasks of completing 

large missing region. Results from context based approaches 

are more semantically correct than classical methods. Our 

proposed method generates better results than CE and CE-W 

in the sense of precise object shapes and structures. 

In the case of clear environment as in Handbag dataset, 

our edge completion network is able to draw the boundary of 

the object (Fig. 3 (d)). We can also notice that the final 

completed images (Fig. 3. (i)) from our method can fit well 

with the edge maps, verified that the edge maps have strong 

effects on the texture prediction.  

When processing ImageNet dataset with complex 

environment, our proposed method can successfully avoid 

texture penetration of neighboring object (e.g. row 1-3 in 

Fig.4). We attribute it to the edge map, which recovered the 

boundary between objects in the edge completion step. We 

also present a negative sample of ImageNet in the fifth row 

of Fig. 4. Little fine structures in the face area are generated 

in the edge completion step, leading to a weird dog face after 

inpainting. This is due to lack of context information inferred 

from its known region, which can also be seen in the results 

from CE and CE-W.  

Table 2 reports the quantitative results of completed 

region on 100K-ImageNet dataset, which reveals similar 

trend with the qualitative results. The PSNR value of our 

methods is about 0.39 dB higher than CE-W.  
 

Table 2. Numerical comparison on 100K-ImageNet dataset. 

Method 
Mean L1 

loss 

Mean L2 

loss 
PSNR SSIM 

CE 26.41% 14.91% 15.13 dB 0.495 

CE-W 24.19% 13.16% 15.68 dB 0.515 

Our method 22.50% 12.19% 16.07 dB 0.549 

 

4. CONCLUSION 
 

In this paper, we proposed an edge-aware image inpainting 

method to handle deformed shapes in the previous learning 

based inpainting approaches. Moreover, according to the 

characteristics of binary edges, we developed an edge 

completion network. Compared to CE, our method can obtain 

images with better structures and correctly located textures. 

Experimental results demonstrated its superior performance 

on challenging image inpainting examples. In the future work, 

we will further look into the problems of how to generalize 

the edge-aware context encoder to applications lying in the 

knowledge and object domain, such as knowledge-based 

coding [25] and person re-identification [26].  
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(a)                  (b)                  (c)                  (d)                  (e)                  (f)                  (g)                  (h)                  (i) 

Fig. 3. Inpainting results for Handbag dataset. (a) original image; (b) masked image; (c) extracted edges; (d) completed edge map; (e) TV; 

(f) EB; (g) CE; (h) CE-W; (i) Our method. 
 

 
(a)                  (b)                  (c)                  (d)                  (e)                  (f)                  (g)                  (h)                  (i) 

Fig. 4. Inpainting results for 100K-ImageNet dataset. (a) original image; (b) masked image; (c) extracted edges; (d) completed edge map; (e) 

TV; (f) EB; (g) CE; (h) CE-W; (i) Our method. 
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