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ABSTRACT

Audio fingerprinting systems are often well designed to cope with a
range of broadband noise types however they cope less well when
presented with additive noise containing sinusoidal components.
This is largely due to the fact that in a short-time signal representa-
tion (over periods of ≈ 20ms) these noise components are largely
indistinguishable from salient components of the desirable signal
that is to be fingerprinted. In this paper a front-end sinusoidal noise
reduction procedure is introduced that is able to remove the most
detrimental of the sinusoidal noise components thereby improving
the audio fingerprinting system’s performance. This is achievable
by grouping short-time sinusoidal components into pitch contours
via magnitude, frequency and phase characteristics, and identifying
noisy contours as those with characteristics that are outliers in the
distribution of all pitch contours in the signal. With this paper’s
contribution, the recognition rate in an industrial scale fingerprinting
system is increased by up to 8.4%.

Index Terms— Audio enhancement, audio fingerprinting

1. INTRODUCTION

Audio fingerprinting addresses the issue of identifying the recording
from which a snippet of audio was produced [1]. In this work, spe-
cific attention is paid to mobile audio fingerprinting scenarios where
an acoustic signal recorded via a microphone is to be identified [2].
This introduces the potential problem of additive acoustic noise to
the fingerprinting system. It is also a common use case in audio
fingerprinting systems, and as such, there are many robust audio fin-
gerprinting methodologies that are designed accordingly [3–9]. This
paper contributes an efficient algorithm to addressing the problems
raised by noise sources that are particularly detrimental to the per-
formance of current state of the art audio fingerprinting systems.

A typical fingerprinting system consists of a front end which
transforms an audio signal into a compact and unique representa-
tion, and a back end in which a matching representation is searched
for in a database. While the introduction of additive acoustic noise
can prompt careful consideration of in the back end, e.g., [10], much
of the literature focuses on contributions that offer robustness to ad-
ditive acoustic noise at the front end. As a first consideration, au-
dio fingerprinting systems are typically designed to encode features
that are largely unchanged by the presence of noise, such as magni-
tude short-time Fourier transform (STFT) peaks in [11–14], chroma
peaks in [15], maximum amplitude Gabor atoms in [16], maximum
amplitude wavelets in [4], and differences in magnitude across the
frequency and time directions of the STFT [7, 17]. Further research
also proposed approaches to further mitigate the effects of noise in
these existing fingerprinting systems as in [3, 6, 8, 9, 18].

The aforementioned robust features used for audio fingerprint-
ing systems are typically based on the highest energy components
of a given signal representation. Accordingly these features tend

to cope with broadband noise sources such as road noise, babble
and white noise because they have a high local signal to noise ratio
(SNR) with respect to noise energy that is spread across wider areas
of a time-frequency signal representation. This in combination with
the aforementioned noise mitigation approaches do an excellent job
in maintaining fingerprinting performance in a range of broadband
noises. These considerations are effective enough that traditional
audio noise reduction approaches such as those in [19,20] don’t typ-
ically further improve the performance of fingerprinting systems1.
This lack of improvement is likely the reason behind the almost
non-existent amount of literature on traditional noise reduction ap-
proaches applied to audio fingerprinting systems.

While fingerprinting systems cope with broadband noise sources
well, noise sources that have high energy components concentrated
in time and frequency tend to be particularly problematic. These
noise types typically include harmonic content such as speech, hum-
ming and singing, which are often present in the mobile audio fin-
gerprinting scenarios this work addresses. For example, it is a com-
mon scenario where the recording to be fingerprinted is made on a
phone in close proximity to vocal activity, with the music to be fin-
gerprinted playing in the background. To address this issue, some lit-
erature has applied source separation methods to audio signals prior
to audio fingerprinting [9, 18]. These methods rely on computation-
ally intensive processes such as the computation of a similarity ma-
trix [9] or independent component analysis [18].

This paper contributes an efficient front end noise reduction sys-
tem for music audio fingerprinting systems that mitigates the effects
of the aforementioned problematic noise sources without the need
for computationally expensive source separation methods. Because
these noise sources are statistically very similar to music signal com-
ponents in a short-time sense, the noise reduction system in this pa-
per employs characteristics of harmonics calculated over the entire
duration of sinusoidal signal components. These characteristics can
be employed in order to identify components that are not typical of
the music signal, and thereafter remove them.

Previous work on isolating sinusoid sources based on their
longer time parameters include [21, 22], although the methods em-
ployed in this paper are unique in three ways. Firstly, this paper
considers the removal of harmonic noise sources for audio finger-
printing systems. Secondly, sinusoids are tracked independently
and later grouped into harmonic sets, allowing the removal of
both harmonic contour sets and isolated high amplitude sinusoidal
components. Thirdly, phase coherence is employed in sinusoid
tracking to mitigate the presence of spurious sinusoid contours. The
proposed system consists of four important components: Phasor
analysis described in Section 2, contour tracing / grouping described
in Sections 3 and 4, classification of contours in Section 5 and re-
moval of contours in Section 6. The output of each of these stages is
displayed in Fig. 1.

1In fact some of the fingerprint noise mitigation approaches resemble tra-
ditional noise reduction methods, e.g., the binary mask in [8].
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2. PHASOR ANALYSIS

Here a signal representation is considered that will allow signal (i.e.,
music) and harmonic noise characteristics to be calculated in order
to identify unwanted noise in Section 5, and remove the unwanted
noise in Section 6. In this work the STFT is defined as,

X [k,m] =

mM+N−1∑
n=mM

x [n]w [n−mM ] e
−i2πnk
K , (1)

where x[n] represents a time domain audio signal and w[n] the
windowing function. M refers to the increment in samples between
windows, N the windowing length and K the number of frequency
bins in the discrete Fourier transform.

While pitch contours could be approximated based directly on
amplitude peaks in the STFT in some scenarios, in order to effec-
tively remove a harmonic component its frequency, phase and mag-
nitude must be known with greater accuracy than the STFT offers.
Here, the instantaneous frequency, phase and amplitude of signal
phasors are considered, calculated from the STFT as,

ωk,m =
2πk

K
+

(
∠X [k,m]− ∠X [k,m− 1]− 2πMk

K

)
mod 2π

M
,

(2)

φk,m = ∠X [k,m] + ∠W (ωk,m) , (3)

Ak,m =
2 |X [k,m]|
|W (ωk,m)| , (4)

respectively. Here, W (ω), refers to the discrete-time Fourier
transform of the windowing function w [n]. The set of frequency,
phase and amplitude parameters describing each phasor will be de-
noted as ρk,m.

This provides a phasor for every frequency bin in the STFT,
however, many represent the same harmonic component. In this
work only phasors fitting the following conditions are considered,

Ak,m
max
k,m
|X[k,m]| > α, (5)

∣∣∣∣∣
(
∠X [k,m]− ∠X [k,m− 1]− 2πMk

K

)
mod 2π

M

∣∣∣∣∣ < π

K
. (6)

The total set of instantaneous phasors that fit these conditions
will be denoted, P. During the process of grouping P into harmonic
contours it will also be useful to denote the set of phasors currently
grouped into pitch contours as P−, and those remaining as P+.

In order to group the phasors in P into pitch contours that rep-
resent the fundamental and harmonics of a music or noise source,
a pitch contour tracking procedure reminiscent of [23] is employed,
with some differences. As opposed to tracing peaks in a salience
function, here the fundamental and harmonics of a pitch contour are
traced individually based directly on the instantaneous peaks in P,
this allows not only amplitude and frequency continuity along con-
tours, but also phase continuity. In this respect, there are two levels
of grouping hierarchy, the grouping of phasors ρk,m into pitch con-
tours (described in Section 3), and the grouping of pitch contours
into harmonic sets (described in Section 4). As such, the notation
Cl,h is used to denote an individual pitch contour, where l denotes
the harmonic number (l = 0 corresponding to the fundamental) and
h indexing the harmonic set.
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Fig. 1. Output of each of the stages of the noise reduction system. (a)
Spectrogram of a snippet of ”Brave” by Sara Bareilles corrupted by
the colloquial speech utterance ”Two to three weeks... yes... umm,
but other than that...”. (b) Frequency time locations of all phasors
satisfying (5,6), amplitude of each phasor is indicated by the dark-
ness of each dot. (c) All contours traced via methods in Section 2.
(d) Outlier contours and their harmonics isolated via methods in Sec-
tion 5, overlaid on the original spectrogram. (e) Enhanced spectro-
gram after complex spectral subtraction of outlier contours.

3. CONTOUR TRACING

The tracing of any contour, Cl,h, begins with a root phasor, ρrootr,m .
From this root phasor, a pitch contour is traced forwards and then
backwards in time to find a set of phasors in P+ that adhere to the
following amplitude, frequency and phase constraints. Given a pha-
sor that has been selected in the previous frame, ρs,m−1, a phasor in
the following frame, ρk,m, is added to Cl,h given,

|ωs,m−µ − ωk,m| < ∆f , (7)
Ak,m
Ar,m

> ∆A,

(8)

min
ψ
| (ψ2π − φk,m + φs,m−µ + ωs,m−µM) mod2π| < ∆φ. (9)

Each of these constraints describes limits on frequency continu-
ity, amplitude decay and phase continuity, respectively. Here ψ ∈
{0, 1}, and µ refers to the step size of contour tracing - positive for
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tracing forwards, and negative for tracing backwards (here we only
consider µ ∈ {−1, 1}). The set of all phasors in P+ satisfying the
aforementioned constraints is described as Pl,h,m when tracing a
harmonic. Of all phasors in Pl,h,m the phasor that is selected and
added to Cl,h is denoted ρl,hm , and its parameters denoted, ωl,hm , φl,hm
and Al,hm . Note that frequency bin k is dropped for notational sim-
plicity.

The phasor, ρl,hm , is selected as that in Pl,h,m with the minimum
complex distance from the phase advanced previous frame, i.e., that
at the index k which solves,

arg min
k∈P l,h,m

∣∣∣Ak,meiφk,m −As,m−µei(ωs,m−µM+φs,m−µ)
∣∣∣ . (10)

Once selected, the selected phasor is removed from P+ and
added to P−. If no suitable phasors are found, a hypothetical phasor
is synthesized as,

ρs,m = {ωs,m−µ, φs,m−µ + |Mµ|ωs,m−µ, As,m−µ } (11)

which then continues the contour until a stopping criterion is
reached. That is, the tracing procedure (forwards or backwards)
stops when no suitable phasors are found for Oskip frames. Once
traced forwards and backwards from the root phasor ρrootr,m , the set
Cl,h consists of a set of phasors selected from P in addition to 0 or
more synthesized phasors via (11), over a continuous set of frame
indices, m, starting at frame, ḿl,h, and ending at frame, m̀l,h.

4. HARMONIC GROUPING

Using the contour tracing procedure described in Section 3, first a
fundamental contour, C0,h, is traced. In this case, the root phasor,
ρr,m, is selected as that with the highest magnitude in P+. Once
C0,h has been obtained, additional contours are searched for at each
of its harmonics, l ∈ [1, L]. The root phasor for a given harmonic
contour is selected as the maximum amplitude phasor ρk,m that has
a frequency component fitting the condition,

lω0,h
m − Ωdev ≤ ωk,m ≤ lω0,h

m + Ωdev (12)

at any m, for which C0,h exists. Note that when tracing har-
monics, the condition in (12) is added as an additional condition to
the set of conditions in (7,8,9) for forming the set P l,h,m at frame
m.

The set of all contours and its harmonics form a harmonic con-
tour set Hh. Using the aforementioned procedures, harmonic con-
tour sets are traced until ν% of all phasors in P are also included in
any Hh.

5. CONTOUR CLASSIFICATION

In this section a method is proposed to identify noise contours which
may be then removed from the signal using the method in Section 6.
Many common harmonic noise sources such as speech, whistling,
sirens, etc. are monophonic and as such typically contain many
less pitch contours / continuous sinusoidal components than a typical
music signal. The approach proposed here intends to identify pitch
contours that are not typical of the signal observed (i.e., statistical
outliers) and thereafter remove them from the signal.

Based on the information contained in each contour, i.e., ωl,hm ,
φl,hm , and Al,hm , a number of contour characteristics may be calcu-
lated. Here the following features are considered for each contour,

Âl,h = max
m

Al,hm (13)

ω̂l,h =
1

m̀l,h − ḿl,h − 1

m̀l,h∑
m=ḿl,h+1

∣∣∣ωl,hm − ωl,hm−1

∣∣∣ (14)

ξ̂l,h =

∑m̀l,h

m=ḿl,h+1

(
Al,hm

)2∑m̀l,h

m=ḿl,h+1

(
δl,hm
)2 (15)

Where δl,hm is the ”tracing noise” for each phasor in Cl,h and is
calculated similarly to (10)

δl,hm =

∣∣∣∣Al,hm eiφ
l,h
m −Al,hm−1e

i
(
ω
l,h
m−1M+φ

l,h
m−1

)∣∣∣∣ . (16)

These parameters can be used to then identify pitch contours
with unusual characteristics as noise. In practice, depending on the
application and signal, a variety of other functions of ωl,hm , φl,hm , and
Al,hm may also be useful, for example, in the case where the desired
signal is western music, values of median ωl,hm may be useful in iden-
tifying outliers that do not adhere to the key of the audio snippet.

In this work (13) was found to be the most important attribute in
identifying noise that is detrimental to audio fingerprinting systems
for two reasons. Firstly, the desired signal - music, over any small
frequency range, usually contains a relatively homogeneous distribu-
tion of Âl,h, with low variance, especially in the case of more mod-
ern music recordings that undergo heavy use of multi-band compres-
sion, and so outliers in Âl,h are not typical of a music signal. Sec-
ondly, considering the fingerprinting schemes of [11–14], it is pitch
contours with points of considerably higher Âl,h that are most prob-
lematic to the fingerprinting algorithm, therefore by identifying these
as noise and removing them, the most significant improvements in
audio fingerprinting performance are attained.

In order to identify noise pitch contours, first a threshold is em-
ployed, ξ̂l,h > ∆ξ̂l,h , over all contours, to prevent spurious pitch
contours being identified as noise. Next outliers in Âl,h and ω̂l,h are
identified by observing z-scored contours that exceed empirically de-
rived thresholds, i.e., ∆Ā and ∆ω̄ , respectively. Here a bar is used
to denote z-scored variables calculated as,

ȳ =
y − η
σy

, (17)

where η is the median calculated over all values of y and σ the
median absolute deviation [24]. These statistics are employed to
provide robustness to the expected outliers in the music/noise signal.
Specifically outliers are expected at higher values of Āl,h and ω̂l,h.
This idea is motivated by the fact that the tracing procedure in Sec-
tion 2 operates by grouping only the ν% of phasors that form con-
sistent contours each starting with the highest remaining amplitude
phasor ρk,m in the set of ungrouped phasors. Similarly for ω̂l,h, it is
expected that due to the nature of music signal, there will be a large
number of contours with a very small ω̂l,h, that result from sustained
musical notes. As such, the distribution of ω̂l,h will be concentrated
around its lower bound of 0, with outliers at higher values.

It may be noted that the scale parameters σĀ and σω̄ are biased
estimators for scale and dependent on the distribution of the feature
for which it is calculated. However, as the thresholds ∆Ā and ∆ω̄

are empirically derived, the effect of any bias in σĀ and σω̄ may be
considered absorbed into these thresholds.

Each of the z-scored values calculated via (17) that exceed the
aforementioned thresholds and contain a minimum of τ phasors are
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added to the noise contour set, N. In addition, any contours in the
same harmonic set Hh of a contour Cl,h that is in the noise set N,
are also added to N if they too exceed the minimum contour length .

Outlier detection based on the observed statistics of Âl,h and
ω̂l,h is a relatively simple calculation that requires a modest amount
of computational resources. This makes the aforementioned ap-
proach suitable for the mobile devices on which audio is often
recorded for fingerprinting applications.

6. CONTOUR REMOVAL

Once identified, given each contour is considered an accurate repre-
sentation of a deterministic signal, the optimal removal of contours is
performed by complex spectral subtraction [21]. Here the approach
is to simply synthesize a noise spectrum by summing,

d[n] = 2Ak,m cos (ωk,mn+ φk,m), (18)

over all positive frequency sets {Ak,m, ωk,m, φk,m} in N. The
spectrum D[k,m] is then computed via (1) and subtracted from
X[k,m], providing the noise reduced spectrum Y [k,m]. Y [k,m]
can be re-synthesized in the time domain, or used directly in calcu-
lating features for audio fingerprinting. It is important to note that
the interpolation in frequency and phase performed in (2,3,4) is cru-
cial to the accurate removal of deterministic signal components.

7. RESULTS

Here the performance of the proposed noise reduction front end is
evaluated both in terms of objective signal quality and in terms of
improvement in fingerprinting performance. For both cases a dataset
of 500 6 second snippets of audio from 167 popular songs is used to
create fingerprint queries. Each recording was combined with each
of pink noise and talking noise and thereafter convolved with an im-
pulse response that was measured on an iPhone 6 Plus. Noise was
added at global SNRs ranging from -10 dB to 10 dB at 2dB incre-
ments. The talking noise used was taken from the well known TIMIT
database.

In all experiments, the work described in this paper was config-
ured with the following parameters: a sampling rate of 8 kHz, w[n]
is a Hamming function, ∆f was set to the bandwidth ofW (ω),N =
160, M = 16, K = 640, Ωdev = 0.062, α = 2.13 × 10−6W (0),
Oskip = 10, L = 13, τ = 50, ∆A = 0.3, ∆phi = 1.0, ∆ξ̂l,h =
1.0, ∆Ā = 6.68, ∆ω̄ = 8.0, ν = 30%.

As an objective quality measure, the normalized covariance met-
ric (NCM) is employed [25]. This metric is configured to measure
64 linearly spaced bands from 0 Hz to 4 kHz all with equal weight-
ings, as the fingerprinting system employed in this paper is largely
impartial to frequency locations of peaks.

It can be seen in Fig. 2 that at SNRs of 0 dB and below there
is a clear improvement the NCM value indicating that there is an
objective improvement in signal quality. The reduction in speech
noise in the observed examples are usually localised to particularly
loud speech phonemes, typically at frequencies < 2 kHz. These
local improvements are important for fingerprinting algorithms that
only need reliable content over a subset of time and frequency, but
are de-emphasized in a metric such as the NCM here which equally
weights the effect of distortions at all times and frequencies.

To demonstrate the utility of the algorithm proposed in this pa-
per, it is employed as a preprocessor to the industrial scale audio
fingerprinting system in [14]. For the experiment here, the finger-
print index consisted of 120k songs. All 500 6 second song snippets
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Fig. 2. The difference in NCM realized by employing the methods
described in this paper. Differences are computed for each individual
track corrupted by talking noise at the range of SNRs shown.
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Fig. 3. The difference in number of successfully identified 6 second
fingerprint queries realized by employing the methods described in
this paper for samples corrupted by ◦ speech, and � pink noise.

combined with each of the 2 noise types at all 11 SNRs were run as
queries against this fingerprinting system. The difference in number
of correctly identified queries for each scenario with and without the
noise reduction methods described in this paper are shown in Fig. 3.
It can be seen that for SNRs below 0 dB there is a significant im-
provement in the number of queries recognized when corrupted by
talking noise. As expected there is little to no improvement for the
pink noise case due to its lack of harmonic content. However, it is
promising to see that there is no degradation to the fingerprinting
performance as might be suspected due to the unwanted removal of
desirable harmonic content. This is likely due to the relatively ho-
mogeneous nature of pitch contour amplitudes in music signals.

8. CONCLUSION

This work introduced a noise reduction system that mitigates the ad-
verse affects of harmonic noise sources on fingerprinting systems.
It was shown that by tracking a number of highest amplitude pitch
contours over an audio signal, a distribution of pitch contour param-
eters may be used to identify and thereafter remove some of the most
abnormal pitch contours for that signal. By removing such outliers
in maximum contour amplitude and mean frequency change, an im-
provement in both signal quality (indicated via the NCM) and in
fingerprinting recognition rate can be obtained. In future work these
methods could be improved upon via further fine tuning of the pa-
rameters, improved sinusoid parameter tracing methods (e.g., such
as those in [26]), investigation into alternative pitch contour parame-
ters, or more sophisticated pitch contour classification methods such
as support vector machines or deep learning methods.
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