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ABSTRACT

This paper presents a novel deep Reinforcement Learning (RL)
framework for classifying movie scenes based on affect using the
face images detected in the video stream as input. Extracting af-
fective information from the video is a challenging task modulat-
ing complex visual and temporal representations intertwined with
the complex aspects of human perception and information integra-
tion. This also makes it difficult to collect a large annotated corpus
restricting the use of supervised learning methods. We present an
alternative learning framework based on RL that is tolerant to label
sparsity and can easily make use of any available ground truth in
an online fashion. We employ this modified RL model for the bi-
nary classification of whether a scene is funny or not on a dataset of
movie scene clips. The results show that our model correctly pre-
dicts 72.95% of the time on the 2-3 minute long movie scenes while
on shorter scenes the accuracy obtained is 84.13% .

Index Terms— reinforcement learning, movie scene, facial ex-
pression, classification

1. INTRODUCTION
With the widespread video-on-demand mobile phone applications
and websites (e.g. youtube.com), people can access unprecedented
amount of video from diverse online resources. Because of that, ex-
tracting video metadata (e.g. movie scene annotations) is becoming
increasingly more important in facilitating efficient search and rec-
ommendations. For example, in a movie recommendation system,
the system needs to identify the affective information of a movie
scene and reference it during subsequent user requests according to
explicit queries or user interests.

However, movie scene affective labels, such as “funny” are com-
plex constructs that can often be implicit and covert. Hence most re-
liable movie annotations are still manually generated. When human
annotators try to identify the affective label of a movie scene, they
need to take longer context into consideration. This is a complex
non-linear process that encompasses the challenges of data represen-
tation and human perception. In addition, affective label prediction
from movie data is a much more challenging and complex task com-
pared to the prediction on well-prepared standard emotion database;
it contains nuances not necessarily present in emotion corpora and
more realistic capture conditions. Moreover, scene level affective la-
bels convey cumulative information from multiple modalities, such
as the visual, acoustic and lexical channels, that may not always be
congruent. For instance, a “funny” label may be due to the actors’
facial expression but it may be because of the words they said, or
just due to the mood imposed by background music. Despite the
large amount of available movie data, the amount of accurately la-
beled data is severely limited due to copyright and cost of annota-
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tion. Thus, affective movie scene classification is still a complicated
and challenging task in terms of both algorithmic design and training
data.

A lot of related research work focuses on movie affective con-
tent analysis. For example, Wang et al.[1] gave a detailed survey on
video affective content analysis, and Irie et al.[2] provided a movie
affective scene classification algorithm with designed audio-visual
features. Chen et al.[3] were trying to detect violent scenes from a
movie, and related work [4, 5] tried to utilize multimodal features
to predict dynamic emotion in movies. Recently, with the use of
deep learning methods, Acar et al.[6, 7] used convolutional neural
networks (CNNs) to extract a mid-level representation and applied it
to the affective content analysis of video. However, most of the re-
lated research work has been along the route of supervised machine
learning approaches.

One of the alternatives to redesigning the system under con-
straints of data scarcity would be to train one that can understand
a scene’s affective content through a process of trial and error not
unlike how humans themselves first learn to understand and recipro-
cate emotions. In this paper, we use reinforcement learning for this
purpose of movie scene affective label prediction, in an attempt to
bridge the gap between these two areas which might otherwise be
considered unrelated. In using a RL system, we also try to make
a case for online learning for a complex task such as affective la-
bel prediction with intermittent human supervision. Consider a sce-
nario where humans may label any instance in a long video clip. We
would like to exploit the sparse human annotations available in the
training process. We thus want to create a machine learning system
that can explore the decision space irrespective of whether label is
present, but is simultaneously also able to exploit the human input
when available. This mechanism of introduction of human-in-the-
loop is similar to training by Reinforcement Learning, in which in-
formation from action and feedback reward can be incorporated in
the training loop.

Reinforcement learning (RL) is a framework for an experience-
driven autonomous learning method [8]. With the use of deep neural
networks within a RL framework the field of “deep reinforcement
learning” (DRL) is playing a revolutionary role in advancing Arti-
ficial Intelligence. The development of DRL has shown great im-
provement. For example, AlphaGo, defeated the human champion
in the game of Go [9], and even showed the real self-learning success
without any human knowledge [10].

The rise of DRL mainly comes from two aspects: 1) The pow-
erful function approximation and representation learning proper-
ties of deep neural networks (DNNs) [11, 12]. With DNNs, the
low-dimensional feature representations can be obtained from high-
dimensional data (e.g., images, audio, and text), which makes DRL
solve decision-making problems with high-dimensional state and ac-
tion space. 2) RL’s “exploration and exploitation” property. Explo-
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ration is related to gathering more information. It means that the
system will explore different possible trials to see if they are better
than what has been tried before. Exploitation ensures that the sys-
tem makes the best decision given current information, which means
the system memorizes the strategy that has worked best in the past.
These two advantages show the priority compared to many other tra-
ditional supervised learning methods.

In this paper, we tried to employ these properties of DRL to
work on movie scene affective label identification. However, the tra-
ditional DRL framework cannot be applied to our task directly. The
affective information at each movie frame is related to environment
state and the agent uses the environment state to make the classifi-
cation. In this case, each frame’s affective label decision that is gen-
erated from the agent cannot interact with the environment, since
the movie scene data sequence is determined already. To employ
DRL into our work, we proposed a modified DRL framework based
on our task to make the interaction between agent and environment
available.

The rest of paper is organized as follows: Section 2 describes
in detail our proposed DRL framework to predict affective label for
movie scenes. It begins with the introduction of traditional DRL,
then describes our proposed new framework and use of transfer
learning to improve our system. Section 3 provides a brief descrip-
tion of the movie database used in our paper, after which we describe
data processing, the pre-training model used in transfer learning and
experiments settings. After that, we discussion our results in section
4. Finally, we conclude and discuss future work in the section 5.

2. METHODOLOGY
In this section, we will describe our proposed Reinforcement Learn-
ing framework on movie scene affective label identification.
2.1. A brief introduction to Reinforcement Learning
Before illustrating our proposed modification to RL, we first describe
a traditional RL application in brief. The main idea in RL, which be-
longs to a class of experience-driven autonomous learning methods,
can be regarded as the typical artificial intelligence idea – improving
the system over time through trial and error [8]. A traditional RL
algorithm can be modeled within perception-action-learning loops.
Within each iteration during training, denoted using the time step t,
the agent observes the state s(t) from the environment. The agent
then uses its policy to choose an action A(t) based on the state s(t),
and once this action is executed, the environment is updated to a new
state s(t+1). Most importantly, this transaction provides a feedback
in the form of a reward R(t). With these round of updates, we ob-
serve the state transitions and the associated reward, which can be
denoted in the form of a 4-tuple (s(t), A(t), s(t+ 1), R(t)) associ-
ated with time step t. A RL algorithm aims to learn and improve its
decision policy using an online update strategy by using the reward
as a feedback. For more details of RL, one can refer to [8, 13, 14].

The key point of standard RL application is that the agent cannot
observe all state transition of dynamic. Each interaction with the en-
vironment will generate new information, which the agent employs
to update its knowledge[8], and the environment state will also be
changed during the interaction process.

The movie scene clip can be regarded as the sequence of data
samples along different modalities. For example, from the speech
modality, it consists of audio signals, from the visual modality, there
is a sequence of image frames within each movie scene clip. For
the affective label prediction task, human annotators need to process
dynamic temporal affective information to obtain the correct label.
For RL application, the agent’s action decision also contains strong
temporal correlations, and current action decision plus the reward

also depends on previous steps. Thus, we try to use RL to predict
the affective label for movie clips.
2.2. Challenges in RL on movie affective label identification
Applying traditional RL framework to our task is a challenging task
due to the following:

• Interaction between agent and environment.
• Complexity of movie data.

We will illustrate these challenges briefly. As described above, in the
RL framework, usually, the environment will be changed according
to the response of agent’s action. For example, when playing the
Pong game [15, 16] with RL and the agent will give the action to
move the pad one step up or down, and further change the video
game screen image, which is regarded as environment state. How-
ever, in our case, the frame sequence is fixed within each movie
scene, agent’s action (e.g. the prediction of affective label at current
frame) cannot change the movie scene sequence data. So, we cannot
use only the movie itself as the environment state, we need to add
more components, and make the agent action (e.g. current frame
affective label prediction) interactive with the environment state.

Another challenging part is related to the complexity of movie
dataset. Affective information identification on movie data is much
more complicated compared to other standard test datasets. For ex-
ample, on the audio channel, most of the human conversation is
mixed with background music, which makes it inaccurate and chal-
lenging to extract speech prosodic features from movie audio chan-
nel directly. On the image channel, the most straight forward idea is
to extract affective information from human faces, which contain
most affective information. This is the reason that face recogni-
tion from movie scene and face expression recognition also received
widespread attention in the research community [17].

In this work, we mainly focus on employing RL on a sequence
of images, more accurately, we try to identify affective movie scene
labels based on actor or actress’s face at each movie frame.
2.3. Framework of our proposed method
As mentioned above, we need to design a new RL framework such
that the agent action can interact with the environment state. Our
proposed RL framework is shown in Fig 1. The movie scene clip is
considered to be a sequence of movie frames. At each time step t,
the environment state has two components, the original movie face
embedding vector ε and the predicted affective information α at
time step t. By considering this joint information, the agent using
the Deep Q-network (DQN) [15], makes a corresponding decision
on the action. The action output is, in our case indicative of the
affective label prediction at the frame level at time step t. Then the
predicted affective information input α (t+1) at time t+1 is using
either the action output at time t or human annotations at time t if
available. α (t) is then used as part of environment state input to
the DQN, and used by the agent to generate the next action at time
t+ 1. This is clearly illustrated in the equations below.

A(t) = Q(s(t)) = Q([ε(t), α(t)]) (1)
R(t) = H(A(1), . . . , A(t), F ) (2)

α(t+ 1) = G(A(1), . . . , A(t)) (3)

The function Q represents deep Q-network, a specific kind of DRL
and will be described later. F represents the true affective label.
A(t) is the action at time step t. At each step, the reward is generated
by function H based on actions taken thus far. In our case, this action
represents the predicted affective labels and hence it is compared
against the human annotated movie scene affective label to obtain a
reward value.
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Fig. 1. Proposed RL framework on movie affective label prediction

The function G is similarly used to add the prediction from the
previous time steps, into the current environment state, which will
involve the agent’s action in the environment updating process.

With the proposed RL structure, we can design different func-
tions G and H for certain applications. In this work, the details of
these functions will be described later.
2.4. Facial expression embedding pre-training
In this paper, we mainly focus on applying our proposed method on
movie’s visual channel. Although Deep RL algorithm can process
high-dimensional inputs, directly training the agents on visual in-
puts is not feasible due to the large number of samples required [8].
To make the RL converge faster, we use transfer learning idea to ex-
ploit previously acquired knowledge from the pre-trained model. In
our case, after extracting the cropped face from each movie frame,
we will utilize the pre-trained deep neural network model on facial
expression recognition task [18], and use the embedding output of
neural network as the high dimension feature representative used in
RL learning. More details of the configuration of our experiment
will be described in the section 3.

3. EXPERIMENTS
3.1. Dataset
We use the Kaggle Facial Expression Recognition Challenge dataset
[18] to pretrain our facial expression embedding model. This dataset
comprises 48x48 static grayscale images of human faces, each la-
beled with one of the 7 emotion categories: anger, disgust, fear, hap-
piness, sadness, surprise, and neutral. Face images in this dataset
vary considerably in scale, pose and illumination, making the trained
model more robust which is necessary considering the variety of de-
tected face in the real movie frames. All of the images are addition-
ally pre-processed to detect and localize the faces.

The movie dataset used in our work comes from 18 movies se-
lected from different genres and time periods. We divide each movie
into clips at the scene level and obtain annotations at the scene level
indicating the mood or tone of the scene. This gave us a total of
1471 scenes. A single movie scene clip can be associated with mul-
tiple tone labels, such as funny, exciting, calm etc. In spite of having
several different unique tone labels, working on a multiclass or mul-
tilabel classification problem was not feasible since the distribution
of labels was extremely sparse i.e. most tone labels had very few
examples. Seeking to derive better labels using data-driven methods
we first analyze labels in our dataset using different unsupervised
clustering methods such as spectral clustering on k-hot encoded tone
labels using different distance metrics. This analysis revealed that
most of the training data was split into half along the class “funny”.
As a result, we decided to simplify the task to binary classification
with the labels funny(F = 1) and not funny(F = 0). For the pur-

poses of this work, we consider any scenes without the tone label
“funny” to be “not funny”.
3.2. Movie data processing
For experiments, we created the affective label classification dataset
based on the original movies and annotations. In this work, we limit
our focus to the video channel in the movie, specifically the charac-
ters’ faces. A sequence of these face image is pre-extracted from the
video and utilized as an input to our system. To detect the faces at
each frame, we employ the standard face detection library dlib [19]
to extract faces from each frame of the video channel. If a frame
contains multiple faces, we select the one closest to the center of the
frame. The intuition behind this selection is that when multiple faces
are shown on screen it is quite likely that the main character’s face
is located in the center of the screen to dominate the scene’s affec-
tive information. We also notice that the face selected by this criteria
often turns out to be the largest in area compared to other detected
faces.

However, the amount of the annotated movie data is still small
for training a robust model, due to the limited number of available
movies and expensive human annotation process. Since our videos
use a frame rate of 24fps, we notice that the difference between face
posture at neighboring frames is insignificant. Thus, we augment
our dataset by generating multiple movie face sequences for each
movie scene in the following manner. For each movie scene clip, we
use only every 18th frame. Since we have limited data we re-sample
every movie clip by starting with frames 0, 2, .. 16, thus resulting
in 9 sequences, each downsampled by a factor of 18 per movie clip.
Based on this processing, each sequence can represent one of the
original movie scene sequences, which are roughly two minute long
movie clips. By this shifted temporal subsampling strategy, we can
incorporate information from the full dynamic range of face changes,
increase the available movie sequences, and increase the diversity of
data within each sequence.
3.3. Facial Expression Embedding model
Instead of training a facial expression model from scratch on faces
from movies, we use another larger facial expression dataset to first
pretrain our facial expression embedding model. We train a Convo-
lutional Neural Networks (CNNs) model with 6 layers of 2D Con-
volution, max-pooling and Dropout layers with ReLU nonlineari-
ties between each layer. The output layer uses a softmax activation
function to classify a face into different expression classes. Our ex-
pression classification model achieves an accuracy of 64% on the
validation set. We use this pretrained model to generate embeddings
using the last-but-one fully-connected layer.
3.4. RL model for Affective Label Prediction Experiment
We use deep Q-network (DQN) [15] for our proposed RL frame-
work. The input to DQN in our model comprises two parts. The
first part is the facial expression embedding ( ε ), output by the pre-
trained CNN of facial embedding model as described earlier. The
second part is an affective information encoding vector ( α ) which
conveys affective decision taken at the previous step. This was de-
scribed in detail in section 2.3. At each time step t, the algorithm
can employ human annotated ground truth label input if available,
by setting α (t) = Ahuman(t− 1). If no human input is available,
as is often the case in real data, then α (t) = G(A(1), . . . , A(t−1))
can be used, the belief from prior frames.

Instead of directly concatenating these two parts of input, we
first transform the affective information input ( α ) via two fully
connected layers, the output of which is then concatenated with the
facial expression embedding. This fused input feature is then passed
through two additional fully connected layers with ReLU activations
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Fig. 2. Proposed structure of DQN with facial embedding model

and one Q-value output layer with the linear activation. The whole
framework of our DQN plus facial expression model is shown in Fig-
ure 2. In DQN, Q value is approximated by neural networks. Thus,
the output of DQN contains the Q value of every action possible,
which in our model is related to the affective label decision. Recall
that G is a function that maps the DQN’s outputs to α , which will
be further used as part of inputs to DQN. For our experiments, we
design G to transform the predicted action vector at the last time
step in the form of a one-hot encoding of the maximum Q-value.
α(t + 1) = G(A(1), . . . , A(t)) = hardmax(A(t)). This means
that we encode the action A(t) with the largest Q-value at step t us-
ing a one-hot vector. This one-hot 2-dimensional vector indicating
whether a scene is funny or not is indicated by α(t+1) and input to
the DQN at step t+ 1.

Another important aspect of RL, is the choice of reward func-
tion, since the reward value is used as a feedback to update the Q
value. The DQN uses the reward, which is the difference between
new score and previous score, to learn the optimal policy for choos-
ing the action. In our scenario, for each training sequence sample,
we only have one human annotated label for the whole training se-
quence. No supervision for the affective label is available at the
frame level.

The DQN needs a reward value to update the Q value at each step
of action. In our framework, the function H is utilized to calculate
the reward value R. Function H is designed as follows: Within
each frame sequence training sample, the reward value is based on
majority vote of frame-level results up to now. Based on this design,
we could assign a reward at each frame step, not just at the end of
the whole sequence.

In addition, we found from some initial experiments that the
absolute value of the reward is critical to the convergence of the
training. If the reward value is too large or too small, the system
doesn’t converge and the RL system fails to learn affective informa-
tion. Also, a larger reward value is typically used for the terminal
step than intermediate steps and the ratio of these values also needs
to be carefully determined. Based on some initial experiments, we
select the values Rinter = ±0.05, and Rend = ±1 for our applica-
tion. A positive reward indicates that the action output is same as the
true label, while a negative value is used for the reward when they
differ.

4. RESULTS AND DISCUSSION
Baseline of movie scene affective classification As mentioned in
Section 3.1, we generate subsampled movie face sequences and split
them into three parts. The training, validation and test database has
7199, 699, 732 number of samples respectively. Within each part,
the number of funny and not funny samples is roughly the same. The
by-chance classification accuracy is regarded as 50%. The validation
set is used to monitor the training process to avoid overfitting, and

also tune the parameters of DQN.
RL framework movie scene affective classification As mentioned,
we use our system to simulate annotator involved RL affective iden-
tification system. The α is designed as previous agent’s action one-
hot binary classification output result, in which it is either [0,1] or
[1,0]. This one-hot α has a deterministic boundary value, which is
similar to the case that we involve the human’s decision during our
system training process. We only have human annotated scene level
label and two methods are employed to evaluate our model. One is
using majority vote of all frames level action output results; another
way is directly regarding the accumulated last frame’s result as the
scene level decision. The results on funny label binary classification
is shown in the second row of Table 1. From these results, we note
that the majority vote method performs better than the second one.
Table 1. DQN binary classification accuracy on the two datasets(%)

dataset Majority Vote Last acc. frame
full scene 72.95 61.43

shorter 30 fr. 84.13 74.51
RL framework movie scene affective classification with shorter
sequence We perform another experiment by fixing the movie se-
quence length to 30 frames (represents roughly 15 seconds in the
original movie) and use a sliding window approach on the down-
sampled sequence dataset to generate more training samples. This
allows us to generate more data by training on smaller subsequences.
As a result of more training data and since the samples are uniform
in length, we observe a better classification accuracy as shown in
the third row of Table 1. It is also possible that reducing the length
of the sequences, reduces the complexity within each sequence, and
the system is able to deal with this reduced complexity better. More-
over, over a shorter time duration, the variance in the movie image
sequence input is significantly lesser considering the stationary prop-
erty of the behavioral state of a person. Under this condition, the α
at frame level would play a more important role since each frame
level decision is more related to the final scene level decision. These
results indicate that in real scenarios, in which occasional human
annotated α is used, human’s involvement in the RL training loop
could potentially help the system to correct labels and the system
uses that opportunistic human correction to improve its training.

5. CONCLUSION
In this paper, we address the problem of using RL method to predict
funny scenes in movie clips using face images. We modified tradi-
tional RL structure in order to achieve the interaction between label
prediction agent and environment state. Compared to all previous
supervised sequential based affective recognition system, our DRL
based work can generate the output affective label in real time and try
to learn the policy through exploration and exploitation. These prop-
erties usually cannot be achieved by the regular supervised learn-
ing methods, which are usually purely exploitative. The results are
promising considering the complexity of movie dataset. Further, our
method shows its potential application in the real scenario, in which
human involves in the RL training process to help RL correct its
error and improve the performance.

For future work, we plan to employ multimodal cues including
audio and video features. The rich affective content in movies is
inherently multimodal. The affective information is evoked through
video, human speech or even the background music. Considering
all features from different modalities will apparently improve the
performance of the RL affective recognition system.
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