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ABSTRACT

We propose a method for detecting objects that correspond
to given three-dimensional (3D) point clouds in a scene. We
regard the 3D object detection as a series of optimal match-
ing of the object and scene images that are obtained by pro-
jecting point clouds into multiple viewpoints. The key nov-
elty of the proposed method is to introduce a constraint im-
posed by the spatial relationship among the image-projection
directions for the object point clouds, to discover the opti-
mal matching of the projected image sets. This constraint
allows to evaluate the appearance consistency of the object
in multi-viewpoint scene images. Thus, image-projection di-
rections can be effective cues to detect objects even in clut-
tered scenes, where previous methods are not effective. We
estimate the image-projection directions for the object point
clouds by applying principal component analysis to the ob-
ject point clouds and hence include highly discriminative im-
age features. Then, we back-project reliable matching results,
which are retrieved from the image set correspondence, into
3D space to achieve a point-wise object detection. Experi-
ments using public datasets demonstrate the effectiveness and
performance of the proposed method.

Index Terms— 3D Object Detection, Point Clouds

1. INTRODUCTION

Three-dimensional (3D) object detection using point clouds
has been widely investigated. In fact, given that point clouds
provide 3D structural information, robust object detection
can be achieved. Moreover, techniques for 3D object detec-
tion can be applied to a wide range of applications such as
robotics, augmented reality, and virtual reality.

Different methods for 3D object detection using point
clouds are available [1–13]. In [1–4], the authors proposed
algorithms for object detection using 3D local feature de-
scriptors such as: spin image (SI) [1], signature of histograms
of orientations (SHOT) [2], fast point feature histogram
(FPFH) [3], and etc. These algorithms perform a template
matching of 3D local descriptors to detect target objects.
Likewise, methods in [5–7] preliminarily apply a (semantic)
segmentation of the scene point clouds to match templates
with high accuracy. This segmentation allows to effectively
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Fig. 1: Illustration of the main idea of the proposed method.
We introduce a constraint based on the relationship among
image-projection directions of point clouds to achieve a point-
wise 3D object detection.

search for objects because the target scene is (semantically)
localized. However, the above mentioned methods, are not
accurate in cluttered scenes, because the feature extraction
and segmentation are severely compromised in such scenes.

Unlike the template matching-based approaches, other
methods [8–10] have rely on classifiers trained using 3D
local descriptors [14, 15], or deep features [10], to achieve
accurate object detection. However, these methods require
the inclusion of many instances (features) to obtain a high
accuracy.

Other previous efforts considered 3D object detection as
a series of two-dimensional (2D) detection problems in dif-
ferent images [11–13]. Specifically, by projecting 3D point
clouds into multi-viewpoint images, 2D object detection algo-
rithms can be applied to detect 3D objects. These algorithms
[11, 12] depend on projection of 3D objects obtained from
computer-aided design models. However, the algorithms are
limited by the information available in a model database, and
hence new 3D object models should be created whenever the
detection of unavailable objects is required. Likewise, Pang
et al. [13] proposed a method for 3D object detection by using
a series of images obtained from 3D point clouds projections.
The method consists of a template matching between pro-
jected images of both the target object and the scene. Then,
the outcomes from the template matching are back-projected
into 3D space.

However, these projection-based methods hinder accurate
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Fig. 2: Diagram of the proposed method. (a) Point clouds projection, (b) Determination of optimal correspondences among
image sets, (c) 3D object detection by back-projection.

object detection, and template matching outcomes are less
accurate when the projected images of the scene are simi-
lar to those of the target object. In the previous work [13],
image projection directions are randomly selected, thus pro-
viding noisy observations that further degrade accuracy of
the template matching. Consequently, this type of method
can include false correspondences that are back-projected into
3D space, thus leading to an erroneous 3D object detection.
Therefore, the solution to these problems requires (1) prevent-
ing false template matching of a single image pair and (2)
estimating appropriate image-projection directions.

In this paper, we consider the 3D object detection prob-
lem as the determination of optimal correspondence among
image sets. Unlike previous work [13] that directly uses in-
dividual correspondences of randomly projected image pairs,
the simultaneous matching of projected image sets allows to
evaluate the appearance consistency of the target object in
multi-viewpoint scene images. Thus, the image sets provide
effective cues for object detection and lead to suppressing the
influences of inaccurate matching in individual images.

The main novelty in the proposed method is to introduce
a constraint, which is imposed by the spatial relationship
among effective image-projection directions for the object
point clouds, to determine image set correspondences, as il-
lustrated in Fig.1. We obtain the effective image-projection
directions by applying a principal component analysis (PCA)
to the object point clouds. Hence, the projected images in-
clude highly discriminative features; it allows to improve the
accuracy of template matching. Consequently, the proposed
method back-projects only reliable candidates in the region
of the target object in the scene images into 3D space, thus,
providing accurate object detection in point clouds.

2. METHOD OVERVIEW

Figure 2 shows a diagram of the proposed method. First,
object point clouds CObj are projected toward M directions,
{θObj

1 , . . . ,θObj
M }, that are estimated by PCA. Hence, M pro-

jected object images, IObj = {IObj
1 , . . . , IObj

M }, are obtained.

Likewise, scene point clouds CSce are projected. The scene is
preliminary divided into K sub-regions. For each sub-region,
a subset of CSce is projected toward L directions. We define
these projection directions as θSce = {θSce

1 , . . . ,θSce
K } =

{(θSce
1,1 , . . . ,θ

Sce
1,L), . . . , (θ

Sce
K,1, . . . ,θ

Sce
K,L)}, and thus obtain

K × L projected scene images ISce = {ISce1 , . . . , ISceK } =
{(ISce1,1 , . . . , I

Sce
1,L), . . . , (I

Sce
K,1, . . . , I

Sce
K,L)}.

Then, the simultaneous correspondence between the pro-
jected object and scene image sets is determined. Finally, the
point-wise 3D object detection is achieved by back-projecting
the scene images that optimally correspond to those of the ob-
ject into 3D space.

3. IMAGE PROJECTION OF POINT CLOUDS

3.1. Direction Estimation of Object Projection

To obtain a reliable correspondence of an image pair, we
apply PCA to properly estimate the image-projection direc-
tions for CObj. In PCA, the first principal component has
the largest CObj variance, which indicates that the image
projection orthogonal to the direction of the first principal
component contains plenty of point clouds information, thus
providing highly discriminative image features.

Let the eigen vectors corresponding to the first, second
and third principal components be u1, u2 and u3, respec-
tively. We perform a parallel projection of CObj toward
the directions that are orthogonal to u1. Specifically, we set
θObj = {θObj

1 , . . . ,θObj
M } such that its elements are projected

at regular angular intervals in the u2 −u3 2D sub-space. The
object image projected toward θObj

m is represented as

IObj
m = Proj

(
CObj;θObj

m

)
, (1)

where Proj(C;θ) denotes an operator for parallel image pro-
jection of point clouds C to direction θ. In this way, we obtain
a set of projected images corresponding to the object. The
projection stages in Figure 2 illustrate the image-projection
process.
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3.2. Projection of Scene Point Clouds

We assume that the scene point clouds CSce are diverse and
widely distributed. In that case, some of the scene point
clouds can be projected onto the same pixel in a 2D image.
Hence, the structural information of the scene point clouds
will be partially lost in the projected image.

To overcome this situation, we divide the scene into K
cuboid-shaped sub-scenes. The size of each sub-scene is set
as αXObj

bnd × αY Obj
bnd × αZObj

bnd , where XObj
bnd , Y Obj

bnd and ZObj
bnd

denote the dimensions in the corresponding axes of the 3D
bounding box that encloses CObj, and α > 1 is an adjustment
parameter. Each sub-scene overlaps with its neighboring sub-
scenes at each axis to avoid splitting latent object point clouds
in the scene. We set the overlap with respect to each axis as
αXObj

bnd/2, αY Obj
bnd /2 and αZObj

bnd/2.
Based on this scene representation, the scene point clouds

CSce can be represented as a series of subsets: CSce =
{CSce

1 , . . . , CSce
K }. Each subset CSce

k is projected toward
directions {θSce

k,1 , . . . ,θ
Sce
k,L}. Specifically, these projection

directions are selected randomly and uniformly at mul-
tiple depth layers, as indicated in [13]. The projected
scene images in the k-th sub-region are represented as
IScek = {IScek,1 , . . . , I

Sce
k,L}, from which we obtain a set of

the projected images of the scene ISce = {ISce1 , . . . , ISceK }.

4. 2D OBJECT DETECTION

To aggregate candidates that belong to the target object re-
gion, we perform 2D object detection by template matching.

Similar to [13], we extract gradient-based image features
from the projected images, and use them for computing a nor-
malized cross-correlation, fk,l,m, between IObj

m and IScek,l . Ba-
sically, template matching extracts region Dk,l,m from IScek,l

with the highest fk,l,m.
By applying the template matching to every pair of IObj

and IScek , we obtain a set of the candidate object regions
and the corresponding similarity values for k-th sub-region,
{Dk,l,m}1≤l≤L,1≤m≤M and {fk,l,m}1≤l≤L,1≤m≤M .

5. DISCOVERING OPTIMAL CORRESPONDENCE
AMONG IMAGE SETS

To improve detection performance, we estimate an optimal
correspondences among image sets {IObj

1 , . . . , IObj
M } and

{IScek,1 , . . . , I
Sce
k,L}. We compute this processing for each sub-

region. We define the correspondence between IObj
1 , . . . , IObj

M

and IScek,1 , . . . , I
Sce
k,L as πk = (πk(1), . . . , πk(l), . . . , πk(L))

where πk(l) = m is a correspondence between the m-th ob-
ject image IObj

m and the l-th scene image IScek,l . We obtain the
optimal correspondence π∗

k using direct programming (DP)
matching as follows:

π∗
k = argmin

πk,s

min
π′

k,s


L∑
l=s

(
1− fk,l,π′

k,s(l)

)
︸ ︷︷ ︸

E1

+
1

2

∣∣∣cos(θSce
k,l ,θ

Sce
k,l−1)− cos(θObj

π′
k,s(l)

,θObj
π′
k,s(l−1))

∣∣∣︸ ︷︷ ︸
E2



 ,

(2)

where πk,s is the optimal correspondence obtained when the
s-th scene image IScek,s is set as the initial node in performing
the DP matching, the first term E1 describes the dissimilarity
of template matching between IScek,l and IObj

π′
k,s(l)

(see Sect. 4),
and the second term E2 is a constraint based on the cosine
similarity to preserve the spatial relationship of the image-
projection directions for CObj when searching the optimal
πk,s.

6. 3D OBJECT DETECTION BY
BACK-PROJECTION

We finally perform a point-wise 3D object detection by back-
projecting the candidates in the target object region that cor-
respond to object images {Dk,l,π∗

k(l)
}1≤k≤K,1≤l≤L into 3D

space. We group the N points that belong to {Dk,l,π∗
k(l)

} in
set Cdet = {cdet1 , . . . , cdetn , . . . , cdetN }.

The back-projection from the corresponding views pro-
vide each cdetn a confidence value wn that characterizes
whether it represent the target object. The confidence value
wn is calculated as wn = an · bn, where an is a weight based
on its number of gradient pixels in the image which cdetn be-
longs to, as was used in [13]. The other weight bn provides a
higher value, when the projected scene image including cdetn

corresponds to the object image with a projection direction
being close to u3.

We consider the point clouds that have higher confidence
values wn than threshold th as the final detection results:
x∗ = {cdetn |wn > th}.

7. EXPERIMENTS

To verify the effectiveness of the proposed method, we con-
ducted experiments for 3D object detection using 3D Key-
point Detection Benchmark [16, 17] and RGB-D Scenes
Dataset v.2 [18].

We compared our method with that proposed by Pang et
al. [13] and methods using 3D local descriptors (SI [1], SHOT
[2] and FPFH [3]). In addition, we tested our method without
using the constraint based on the spatial relationship among
image-projection directions (i.e., we omitted the second term
E2 in the righthand side of Eq. (2) in the minimization by DP
matching), and refer to it as “Ours w/o constraint”.
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Table 1: Comparison results of precision rate (P), recall rate (R), and F-measure (F) for the proposed method and comparison
methods on these datasets. The best and the second best scores are represented in bold and with underline, respectively.

Dataset 3D Keypoint Detection Benchmark [16, 17] RGB-D Scenes Dataset v.2 [18]
Sequence Scene1View3 0.1 Scene3View0 0.3 Scene5View3 0.1 01 05 Average

P R F P R F P R F P R F P R F P R F
Ours 0.941 0.737 0.825 0.589 0.727 0.628 0.875 0.947 0.908 0.614 0.598 0.599 0.653 0.847 0.707 0.717 0.756 0.716

Ours w/o constraint 0.720 0.682 0.671 0.425 0.934 0.506 0.677 0.870 0.741 0.485 0.587 0.476 0.561 0.597 0.512 0.563 0.710 0.567
SI [1] 0.333 1.00 0.499 0.333 1.00 0.444 0.333 1.00 0.498 0.03 1.00 0.05 0.08 1.00 0.138 0.192 1.00 0.287

SHOT [2] 0.480 0.799 0.557 0.334 0.981 0.444 0.463 0.847 0.553 0.974 0.927 0.949 0.573 0.201 0.197 0.528 0.823 0.567
FPFH [3] 0.333 1.00 0.499 0.333 1.00 0.444 0.333 1.00 0.498 0.958 0.705 0.811 0.229 0.06 0.09 0.483 0.710 0.487

Pang et al. [13] 0.623 0.826 0.656 0.398 0.927 0.477 0.557 0.783 0.630 0.369 0.687 0.397 0.256 0.740 0.303 0.422 0.786 0.472

Table 2: Comparison results of computation time. The best
and the second best scores are represented in bold and with
underline, respectively.

Ours SI [1] SHOT [2] FPFH [3] Pang et al. [13]
”Scene1View3 0.1” [16, 17] 3.30s 37.3s 47.1s 29.6s 2.39s

”05” [18] 13.1s 366s 451s 263s 11.9s

We set the parameters for the proposed method and that
proposed by Pang et al. as follows. The number of image
projections for CSce and CObj were L = 9 and M = 6,
respectively. The spatial resolution of each projected image
was 640×480. For the other comparison methods, we set the
parameters according to those reported in PCL 1.8.0 [19]. 　

For a quantitative evaluation, we used precision rate (P),
recall rate (R) and F-measure (F), which are calculated as
P = TP/(TP + FP), R = TP/(TP + FN) and F =
2PR/(P + R), where TP, FP, and FN denote the num-
ber of true positives, false positives, and false negatives, re-
spectively. True positives (TP) indicate the number of point
clouds that are correctly detected as corresponding to the ob-
ject; false positives (FPs) indicate the number of point clouds
that are incorrectly detected as corresponding to the object;
and false negatives (FNs) indicate the number of point clouds
that are wrongly detected as scene point clouds (i.e., unde-
tected object point clouds).

Table 1 shows the comparison results for each sequence
that we tested. Figure 3 shows the visual comparisons in 3D
object detection results for the sequences ”Scene1View3 0.1”
of the dataset [16, 17], and ”05” of the dataset [18], re-
spectively. Figure 4 shows the precision-recall curves for
all the methods in the sequence ”Scene1View3 0.1” of the
dataset [16, 17] and ”05” of the dataset [18]. We can see that
our method retrieves better results than the other comparison
methods.

We also compared computational cost for each method.
Experiments were run on a Windows PC with Intel Core i7-
6700 3.40 GHz and 32 GB RAM. Table 2 shows their compar-
ison results. We see that our result is slightly inferior to that
of Pang et al.’s method [13], but favorably compared with the
other methods.

Given these experimental results and analyses, we would
like to state that our method outperforms the other state-of-
the-art methods.

(a) (b) (c) (d) (e) (f)

Fig. 3: Comparison in 3D object detection results. (Upper
row) Results for ”Scene1View3 0.1” of the dataset [16, 17];
(Lower row) Results for ”05” of the dataset [18]. (a) Input
scene point clouds; (b) Input object point clouds; (c) Ours;
(d) Ours w/o constraint; (e) SHOT [2]; (f) Pang et al. [13].
Note that the red points indicate detection results.
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(a) ”Scene1View3 0.1” [16, 17]
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(b) ”05” [18]

Fig. 4: Comparison results of Precision-Recall curves for the
proposed method and comparison methods.

8. CONCLUSION

We proposed a method for 3D object detection using point
clouds by exploring the simultaneous correspondence of the
projected object and scene image sets. We incorporated a
constraint imposed by the spatial relationship among image-
projection directions, which are estimated using PCA, to de-
termine the optimal correspondence of the image sets. The
simultaneous correspondence of image sets allows to obtain
reliable candidates that belong to the target object region. We
achieved a successful 3D object detection by back-projecting
the best candidates into 3D space, as verified from the results
obtained using public datasets.
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