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ABSTRACT

Efforts are afoot to design better context-aware human-
computer interaction techniques that have knowledge of both
their surrounding and the affective state of the user. One of
the most important nonverbal behavioural cues for affective
human-machine interaction is laughter. Automatic detec-
tion of laughter is an interesting, yet challenging problem,
which in recent years has gained increased attention from
both the academic and industrial communities. The majority
of existing laughter detection systems rely on either audio
or video modalities. Humans, however, typically rely on
audio-visual cues during conversation and/or interaction, thus
it is expected that improved results can be achieved if both
modalities are used. In this work, we propose a multimodal
framework that analyzes audio and video channels separately,
then fuses their decisions. Conventional speech spectral and
prosodic features are used, whereas new multi-scale multi-
resolution binarized statistical image features are proposed
due to their improved expressive power. Experiments with
the publicly available MAHNOB Laughter database show
that decision level fusion based on support vector machine
classifiers leads to improved performance over single modal-
ity approaches, as well as over previously-proposed methods,
all whilst requiring just a fraction of the computational power.

Index Terms— Laughter detection, information fusion,
social signal processing, spectral features, BSIF features

1. INTRODUCTION

Social Signal Processing aims at bridging the social intelli-
gence gap between humans and machines [1]. The last cen-
tury has witnessed tremendous interest and progress in hu-
man behaviour understanding using different nonverbal social
signals (e.g., facial expression, vocalizations, gesture, pos-
ture, etc.). Amongst all cues, laughter is one of the most vi-
tal nonverbal behavioural cues, since laughter is a prominent
and very common signal in human communications. Auto-
matic laughter recognition can be used to estimate the emo-
tional/mental state of the person in affective computing [2,
4] applications, to identify non-speech segments in speech
recognition systems, to analyze human-human nonverbal be-
haviour [1] or multi-party meeting [5], and for content-based

multimedia tagging/retrieval [6].
The state-of-the-art in laughter detection is nascent. The

majority of existing work has relied on audio information only
[7], thus ignoring the visual information generated by facial
expressions; something that humans use constantly in human-
human interactions. Recently, some efforts have emerged to
integrate audio and video modalities for laughter detection
[9, 2, 6], but error rates are still fairly high [10]. Moreover,
existing methods rely on complex features, exhibit high com-
putational cost, and are very sensitive to train/test data mis-
match (i.e., “in-the-wild” performance), thus hampering their
use in everyday, real-time applications [11, 3].

In this paper, we aim to fill some of these limitations by
exploring an audio-visual laughter detection algorithm based
on spectral and prosodic audio features, as well as multi-scale,
multi-resolution image features, namely the multi-scale bina-
rized statistical image features (MBSIF) for video content ex-
traction. To make a final multimodal prediction, the poste-
rior probability scores obtained from support vector machine
(SVM) classifiers, trained individually for audio and video
channels, are fused using a decision level fusion method. Ex-
perimental results on the publicly available MAHNOB laugh-
ter database show that the proposed approach outperforms ex-
isting methods in audio-visual laughter detection.

The remainder of this paper is organized as follows. Sec-
tion 2 presents prior works for laughter detection. The pro-
posed approach is described in Section 3. Experimental pro-
tocol, dataset, and figures of merit are presented in Section 4.
Experimental results and discussions are given in Section 5
and, finally, conclusions are drawn in Section 6.

2. RELATED WORK

Laughter is one of the key non-linguistic vocalizations and
most frequently annotated nonverbal behaviour cues [5]. In
recent years with the burgeoning of affective computing, in-
terest in automatic laughter detection has increased. Predom-
inantly, these studies have used only audio information for
laughter recognition. For example, authors in [12] and [13]
developed laughter detection methods based on spectral co-
efficients and phonetic features with hidden Markov models
(HMM), respectively. Beke et al. [14] devised a multi-feature
based laughter detector by constructing a corpus containing
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Fig. 1: Proposed multimodal laughter detection framework.

features such as mel frequency cepstral coefficients (MFCC),
perceptual linear prediction (PLP), amongst others. In turn,
Ringeval et al. [7] evaluated benchmark audio features from
the 2010-2013 Interspeech Conference Challenges. All in all,
spectral features outperformed prosodic ones [2, 7, 15]. Few
works explored the use of face image/video information for
laughter detection. For example, in [16] and [28], 113 and 10
facial points were explored and used as features, respectively.
Only recently, has the fusion of audio-visual modalities for
laughter detection been investigated. Existing works have re-
lied on fusion of facial points as video features and speech
spectral features [9, 8]. For instance, the method in [6] in-
tegrated 20 facial points visual features with six MFCC fea-
tures and the speech signal zero-crossing rate (ZCR). More
recently, [24] fused local binary pattern features with MFCC,
pitch and jitter audio features, and in [29], a Kinect sensor
was used to identify discriminative audio-visual features.

3. PROPOSED LAUGHTER DETECTOR

Laughter detection can be seen as a two-class classification
problem, where the input video sample has to be flagged as
either ‘laughter’ or ‘speech’. The keynote of the process is
to attain discriminant feature sets along with an appropriate
classification scheme that accurately fuses decisions from au-
dio and visual modalities. In this work, we propose a mul-
timodal laughter detection method using multi-scale micro-
texture video features, spectral and prosodic acoustic features
and a decision-level fusion scheme, as depicted by Fig. 1.

The proposed framework first extracts information simul-
taneously from the audio and visual channels. In particular,
the audio channel is used to extract spectral and prosodic fea-
tures, respectively, from MFCCs and residual harmonics [23]
based methods (described in Section 3.2). The visual fea-
tures are extracted using binarized statistical image features
(BSIF). In this work, we propose to use multiple BSIF filters
with different scales in order to capture coarse texture, micro-
texture and larger-scale visual laughter variation information
for improved generalization. The multi-scale BSIF features

are referred to as MBSIF and are described in Section 3.1.
As can be seen from the figure, extracted audio and vi-

sual features are then fed into modality-specific support vec-
tor machine (SVM) classifiers. The classification results of
these individual SVMs are then combined by a decision level
fusion scheme to obtain the final binary decision: laughter
or speech. Specifically, the outputs of individual systems are
compared, if they are not in agreement then the classifier with
the highest likelihood score decides the final class prediction.
More specifically, let Si(x) be the probability score given by
ith classifier for sample x. The final decision can be estimated
as Decision = argmax[S1(x), · · ·, Sk(x)], where k = 4 rep-
resents the number of classifiers explored herein.

3.1. Visual Features

Binarized statistical image features (BSIF) is a local image
descriptor constructed by binarizing the responses to linear
filters [17]. BSIF learns a set of filters from natural images
using a ICA (independent component analysis) based unsu-
pervised scheme. These learned filters are used to represent
each pixel of the given image as a binary string by computing
its response to learned filters. The binary string for each pixel
can be considered as a local descriptor of the image intensity
pattern in the neighbourhood of that pixel. Finally, the his-
togram of the pixels binary string values allows one to char-
acterize the texture properties within the image sub-regions.

In this work, we have utilized the open-source filters
[17], which were trained using 50000 image patches ran-
domly sampled from 13 different natural scenic images [18].
Three main steps are needed to build the BSIF filters: mean
subtraction of each patches, dimensionality reduction using
PCA (principle component analysis), and estimation of sta-
tistically independent filters (or basis) using ICA. Given a
visual laughter sample I of size l × m and a filter Fi of
same size, the filter response is attained as follows [17]:
ri =

∑
l,m I(l,m)Fi(l,m), where Fi,∀ = {1, 2, . . . ,m}

represents statistically independent filters whose response
can be together calculated and binarized to obtain the binary
string as [17]: bi = 1 if ri > 0, otherwise bi = 0. Finally,
the BSIF features are obtained as a normalized histogram of
the pixel’s binary codes, which can efficiently characterize
the texture components in the laughter visual channel.

Filter size and length are important parameters to accu-
rately identify visual laughter using BSIFs. Single filters with
a fixed length may not be capable of generalizing well the vi-
sual laughters with varying intensities. Therefore, we propose
to utilize multiple filters with different scales and resolutions
in order to capture eminent features, thus the name multi-scale
BSIF (MBSIF). In particular, we chose three different filters.
The first is of size 17×17 with a length of 12 bits that will
capture coarse texture information. The other two small scale
filters (11×11 with a length of 9 bits and 7×7 with a length
of 8 bits) will capture micro-texture information. These fil-
ters have been chosen based on overall performance of the
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Fig. 2: Qualitative results of selected BSIF filters on laughter
(top) and speech (bottom) samples from MAHNOB database.
From left-to-right: Input image, BSIF features with 7 × 7,
11× 11, and 17× 17 filters.

proposed laughter detection system.
Figure 2 depicts the qualitative results of the three differ-

ent filters used herein. As can be seen, features encoded by
the 7×7 filter can be regarded as micro-textons, which are
able to capture features especially for periorbital lines (i.e.,
laugh lines/crow’s feet) and tear troughs. The 11×11 filter in
turn, encapsulates macro-features, distinctly about nasolabial
folds, oral commissures, and superficial lines. Lastly, the
17×17 filter captures bristly structures such as vermilion bor-
der, vertical lip lines and glabellar lines and so on. It is ex-
pected that by combining these different filters, thus capturing
distinctive information that is important for laughter charac-
terization, enhanced laughter detection will be achieved.

3.2. Audio Features

MFCCs have been widely used in audio-based laughter de-
tection systems and various speech processing applications
[16, 14, 2, 19]. MFCCs are compact representations of the
speech signal and its spectral envelope [20]. In [21], it was
shown that utilizing only 6 MFCCs could lead to similar
laughter recognition performance as when using 12 coeffi-
cients, thus this parametrization has become popular within
the field. Therefore, the same 6 coefficients are used here and
were computed using 40 ms Hamming windows and 10 ms
overlap. In addition to MFCCs, we also use pitch and jitter
features to represent prosodic information. Pitch and jitter
have been applied in several speech-based emotion recogni-
tion and speech discrimination tasks [22]. Some studies have
claimed that for laughter detection spectral features are better
than prosodic ones [2, 19]. However, higher pitch values
are commonly observed during laughter [8] and recent work
has shown advantages of combining spectral and prosodic
features for better generalization capability [24]. As such, a
similar approach is used here. More specifically, we utilize
the pitch estimation scheme described in [23], which has been
shown to be robust to noisy conditions. Pitch is measured in
the range of 80-600 Hz using a frame length of 100 ms and
frame shift of 10 ms. Jitter is then computed as the cycle-to-
cycle variation of estimated pitch values. All audio features
are extracted from the 16 KHz downsampled data.

4. EXPERIMENTAL SETUP

Here, we provide the experimental setup of the proposed
audio-visual multimodal laughter detection framework.

4.1. Dataset

The MAHNOB Laughter Database [6] was used in this work,
which comprises audio-visual information from 22 subjects
(12 males and10 females). There are 563, 849, 51, 50 and 167
instances of spontaneous laughter, spontaneous speech utter-
ances, acted laughter, posed smiles and vocalizations apart
from speech and laughter, respectively. Videos were acquired
at 25 frames per second using a camera with 720×576 pixels.
Videos were compressed by the H.364 codec. Audio samples
were recorded using built-in microphone in the camera with
2 channels, 48 KHz, 16 bits and a low signal-to-noise ratio.

4.2. Experimental Protocol and Figures-of-Merit

The final audio feature set used for classification was a 10-
dimensional vector comprising the average 6-dimensional
MFCC, and the average and standard deviation of the pitch
and jitter parameters. For the visual channel, we used the
Viola and Jones algorithm [25] to detect the face region for
each frame. The following steps were then performed on the
resulting facial region: conversion to grayscale, histogram
equalization, and rescaling to 241× 241. The SVM classifier
with a radial basis function (RBF) kernel was used.

In this work, we followed same experimental protocol as
in [6]. More specifically, experiments were conducted on a
total of 554 laughter instances and 845 speech utterances. All
experiments reported herein followed a leave-one-subject-out
cross validation methodology, thus guaranteeing that the ob-
tained results are subject independent. Results obtained in
each fold are then averaged to get final results. Classification
is performed on a frame-level basis by applying the classifier
to all frames of a given episode resulting in a series of scores
that are then combined into a final label.

The performance was evaluated via the F1-measure and
overall classification rate (CR) as in [6, 16] and computed
as: F1 = (2 ∗ precision ∗ recall)/(precision + recall),
CR = (TP + TN)/(TP + TN + FP + FN), where TP ,
TN , FP and FN are true positives, true negatives, false
positives and false negatives, respectively, and precision =
(TP)/(TP + FP), and recall = (TP)/(TP + FN). Computational
processing time for extracting visual features per sample/face
was also used as a figure of merit. Processing time, as com-
puted on Matlab version R2015a running on a desktop com-
puter with an Intel Core i7-3770 processor, 3.40 GHz CPU
and 16 GB of RAM, is used.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The results of audio-only, video-only, and audio-visual laugh-
ter detection schemes are presented in Table 1 in terms of F1-
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Algorithm Modality F1 (Laughter) F1 (Speech) CR

Petridis et al. [6]
Audio 77.2 ± 0.7 87.5 ± 0.3 83.9 ± 0.4
Video 79.3 ± 1.1 89.7 ± 0.4 86.2 ± 0.6
Audio-visual 86.5 ± 0.6 92.2 ± 0.3 90.1 ± 0.4

Bedoya & Falk [24]
Audio 90.1 ± 0.11 88.9 ± 0.07 91.9 ± 0.05
Video 88.7 ± 0.15 71.7 ± 0.26 89.6 ± 0.08
Audio-visual 92.7 ± 0.07 91.6 ± 0.06 93.3 ± 0.06

Proposed
Audio 90.1 ± 0.11 88.9 ± 0.07 91.9 ± 0.05
Video† 84.4 ± 0.16 78.9 ± 0.19 83.4 ± 0.15
Video‡ 85.2 ± 0.11 77.0 ± 0.21 86.1 ± 0.10
Video♣ 84.7 ± 0.13 75.9 ± 0.19 85.5 ± 0.10
Video♦ 86.3 ± 0.10 81.7 ± 0.17 87.2 ± 0.10
Video♥ 87.8 ± 0.13 83.4 ± 0.15 88.3 ± 0.09
Video♠ 86.5 ± 0.12 82.2 ± 0.17 88.3 ± 0.10
Video⊕ 86.2 ± 0.21 76.9 ± 0.10 86.0 ± 0.11
Video? 87.3 ± 0.15 84.3 ± 0.17 88.5 ± 0.01
Audio-visual† 89.0 ± 0.15 88.9 ± 0.07 90.0 ± 0.10
Audio-visual‡ 87.8 ± 0.14 90.2 ± 0.08 91.3 ± 0.09
Audio-visual♣ 90.7 ± 0.11 90.0 ± 0.07 91.8 ± 0.08
Audio-visual♦ 87.3 ± 0.17 88.9 ± 0.08 89.9 ± 0.11
Audio-visual♥ 88.9 ± 0.15 88.3 ± 0.08 89.9 ± 0.10
Audio-visual♠ 87.2 ± 0.14 89.4 ± 0.08 90.8 ± 0.09
Audio-visual⊕ 91.4 ± 0.11 89.9 ± 0.07 91.8 ± 0.08
Audio-visual? 94.5 ± 0.10 92.1 ± 0.08 94.3 ± 0.06

Table 1: Mean ± standard deviation of F1-measure and
classification rates (CR) for laughter-vs-speech discrimina-
tion. Superscripts correspond to video features extracted us-
ing: †only 7×7 filter, ‡only 11×11 filter, ♣only 17×17 filter,
♦7×7 and 11×11 filters, ♥7×7 and 17×17 filters, ♠11×11
and 17×17 filters, ⊕all three filters with feature concatena-
tion, ?all three filters and decision level fusion, as in Fig. 1.

measure (%) and classification rates (CR-%). As can be seen,
for video-only classification, the individual BSIF features are
shown to achieve results inline with those previously reported
in the literature. The gains arise when multiple filters are com-
bined, thus incorporating multi-scale, multi-resolution details
into the classifiers. Performances increase by combining the
filters two-by-two and further gains are seen when all three fil-
ters are combined. Overall, the best performance is achieved
with decision-level fusion where an 88.5% CR was achieved,
thus outperforming the system proposed [6, 26] which ex-
ploits facial landmarks points features. Relative to the F1
(speech) score, the proposed fusion system outperformed the
video-only method described in [24] (which relies on local
binary pattern visual features) by 17.57%.

For the audio-only systems herein and in [24], results
outperformed those achieved with video-only features and re-
sulted in an overall CR of 91.9%. Such findings are expected
as the audio channel conveys most discriminatory informa-
tion and video conveys complementary information [2, 6].
Overall, the audio-only scheme used herein outperformed
the video modality by 2.4% and obtained an improvement of
8.50% and 9.53% over the results reported in [26] and [6],
respectively, thereby demonstrating the benefits of grouping
spectral and prosodic features for the task at hand.

Audio-visual fusion, in turn, showed to result in the best
overall performance. As with the video-only case, decision
level fusion of the three BSIF features achieved the highest F1

Predicted laughter Predicted speech
Actual laughter 55.8 % 3.0 %
Actual speech 2.7 % 38.5 %

Table 2: Confusion matrix of proposed system

and CR scores of all compared methods. Relative to the in-
dividual video-only and audio-only accuracies, improvements
of 6.57% and 2.62% could be seen, respectively, with the mul-
timodal method. Such findings suggest that the proposed MB-
SIF features are indeed useful and robust for laughter detec-
tion, thus highlighting the importance of using multiple scale
filters to capture prominent micro-texture (with small scale
size) and coarse texture (using large scale size) information
for laughter and speech discrimination.

Moreover, since MBSIF filters are designed using a set
of natural image patches and ICA, it eradicates the need for
manual tuning of filter parameters and maximizes the statis-
tical independence between the learned filters ensuring effec-
tive information encoding. Moreover, the use of pre-learned
filters removes the need for dataset/application specific learn-
ing. Moreover, since the proposed video features do not re-
quire facial points detection and tracking, lower computa-
tional complexity is required. For the experiments herein,
computational complexity was inline with that achieved in
[24] when all three filters were fused, but roughly 60% faster
when using only one of the three filters. Relative to [6], the
fused system was 54% faster and when using individual fil-
ters, 85% faster computational processing time was achieved.

Lastly, in Table 2 we report the percentage confusion ma-
trix for the proposed multimodal approach. As can be seen,
3% of actual laughters are predicted as speech and 2.7% of
actual speech is predicted as laughter. Closer inspection of
these mistakes suggested that errors occurred when speech
was very expressive (thus system confused as laughter) and
when laughter episodes were created with mouths almost
closed (system confused as speech). In such cases, the video
stream conveyed contradictory information to what was ex-
pected by the classifier. Such issues may be corrected once
larger datasets are made available, thus allowing the classifier
to better learn how to handle such rare episodes.

6. CONCLUSION

This paper presented a novel multimodal framework for dis-
tinguishing laughter from speech using audio and visual infor-
mation. More specifically, we proposed to use of multi-scale
binarized statistical image features (MBSIF) fused with spec-
tral and prosodic speech information. Experimental results
show that the proposed multi-scale, multi-resolution features
can outperform two other benchmarks using video-only fea-
tures and achieve the highest performance overall when fused
with speech information, all whilst requiring just a fraction of
the computational power of the benchmark methods.
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