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ABSTRACT
Finding the locations and identities of faces in videos is a
very important task in numerous applications. In this paper,
we propose a correlation-based face detection approach to
improve the performance of face recognition tasks for videos.
We apply correlation measures to pairs of response maps
which are generated from automatically selected neurons in
deep convolutional neural network (CNN) models to detect
faces in each video frame. The embeddings extracted from
faces cropped by our proposed approach are more consistent
across each video sequence and more suitable for face recog-
nition and clustering tasks. Experimental results from the
YouTube Faces (YTF) dataset demonstrate that our proposed
approach is more robust and achieves better recognition accu-
racy compared to state-of-the-art face detection approaches.

Index Terms— Convolutional neural network, deep
learning, neuron selection, face detection, face recognition

1. INTRODUCTION

Recognizing faces in videos has gained much interest recently
due to the fast growth of social media. In this context, each
person is represented by a sequence of faces in video frames
rather than one single image. Therefore, to improve the recog-
nition performance, it is important to utilize the correlation
between consecutive video frames to detect faces. If corre-
lation information is not utilized and faces are detected inde-
pendently for each frame, the discontinuity of the face images
within each video sequence will introduce large variations in
the embedding space leading to inferior performance.

In our work, we propose a correlation-based approach that
utilizes response maps from CNN models to detect faces in
video sequences such that the face features of each identity
are better aligned in the embedding space. CNN models have
significantly advanced the state-of-the-art in many computer
vision tasks, such as image classification [1, 2], face detection
[3, 4, 5], and face recognition [5, 6, 7, 8, 9, 10], but the un-
derstanding of what they learn has been far behind. Zeiler et
al. [11, 12] proposed Deconvolutional Network (deconvnet)
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to visualize features learned by different neurons by revers-
ing the operations of normal forward computations into back-
ward computations. Several works [13, 14, 15] propose ex-
planatory frameworks that analyze network predictions to au-
tomatically identify important neurons. These neurons can be
translated to input space and generate interpretable response
maps for understanding CNN models. Our framework lever-
ages this concept to generate response maps that show clear
silhouette of the faces in each video sequence, and the correla-
tion between these response maps are utilized to detect faces.
We then input these face sequences to recognition models to
generate face embeddings for each identity. These recogni-
tion models [6, 7, 8, 9, 10, 16] learn compact face embeddings
which discriminate faces of different identities.

We evaluate the performance of our proposed approach on
the YouTube Faces (YTF) [17] dataset. Each identity in the
YTF dataset contains several video sequences, and only one
embedding is needed to represent each video sequence. Most
methods average embeddings extracted from the K frames
sampled from each video sequence either randomly or under
certain conditions. If the faces are detected independently for
each frame, the features in the embedding space may not be
consistent. We compare our result with recent face detection
algorithms to demonstrate the superiority of our proposed ap-
proach. Deformable part models (DPM) based method [18]
is one of popular and widely adopted approaches. It applies
a trained latent SVM as classifier to find geometric relations
within parts converted from faces. Despite its high compu-
tational complexity, DPM achieves state-of-the-art on several
benchmark datasets and even outperforms some CNN based
methods [3, 4]. We demonstrate that compared with such
an accurate face detector, faces cropped by our proposed ap-
proach generate more consistent embeddings, resulting in bet-
ter face recognition performance.

2. PROPOSED APPROACH

In this section, we introduce our proposed approach which
utilizes the correlation between response maps generated
from CNN models to detect faces in video sequences. First,
we extract response maps for all the images in each video
sequence. This is achieved by a forward pass through the
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Fig. 1: The overall framework of our proposed approach.

CNN model, stopping at an automatically selected neuron. A
deconvnet is then attached to this neuron to generate the re-
sponse maps. Finally, the correlation between these response
maps are calculated to find the face locations and the regions
with higher response will be cropped as face images. The
overview of our proposed approach is shown in Fig. 1.

2.1. Automatic Neuron Selection

CNN models encode semantic features in neurons of differ-
ent layers. Neurons in deeper layers capture complex fea-
tures, while neurons in shallow layers only activate on simple
features such as edges or color. Inspired by [15], we target
to automatically select a neuron that activates on the faces
while having small variations within each video sequence.
Let xn ∈ {x1, ..., xN} denote the frame image from the in-
put video sequence, and zl,in denote the activations of the ith

neuron in the lth layer of a CNN model given xn. The overall
variance vl,i is calculated by averaging variance of each (r, c)
element in zl,in which is of size R× C.
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1
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Neurons that have small variation are considered important,
since they consistently contribute similar activation magni-
tude despite the variations within the video sequences. How-
ever, one case to be excluded is when some neurons are not
activated throughout the video sequence which results in zero
variance. Hence we also require the important neurons to
have large activation magnitude. Let ml,i denote the acti-
vation magnitude of zl,in which is obtained by averaging re-
sponses of the neuron within each video sequence.

ml,i =
1

RC

R∑
r=1

C∑
c=1

µl,i
r,c (3)

To enhance the stability of neuron selection, we introduce a
target specific prior which emphasizes the important elements

in the neuron. We multiply each neuron by a Gaussian kernel
gl,i with the peak centered at the max element of the neu-
ron. The standard deviation σ of the Gaussian kernel con-
trols the concentration level of the target with respect to our
prior knowledge. This Gaussian kernel penalizes elements
that have large activations but are far from the max element of
the neuron to avoid selecting neurons that activate on certain
texture of the background. Therefore, the activation magni-
tude ml,i is reformulated as,

ml,i =
1

RC

R∑
r=1

C∑
c=1

µl,i
r,c � gl,i (4)

The ability of each neuron to encode important features
across the video sequence is approximated by maximizing the
objective function I ,

I(l, i) = ml,i − λvl,i (5)

where λ balances the effect of activation magnitude and vari-
ance. Since faces in the videos have various angles, we set λ
to 0.1 to tolerate the variations induced by the faces. Neurons
that maximize the objective function are chosen to generate
the response maps.

2.2. Response Map Generation

All neuron responses in the selected layer are set to zero, ex-
cept the chosen one which is attached to a deconvnet [12] for
deconvolving back to the image space such that the important
patches are emphasized. This process includes unpooling,
rectification and transpose filtering, and is repeated until it
reaches the input image space. The generated response maps
have the same dimension as the input images and show clear
silhouette of the faces which provide information of the face
locations. Response maps of consecutive frames are slightly
different due to the noise of the background and motion of
the faces. Therefore, cropping regions with large response di-
rectly may lead to crooked face images which introduce large
variations in the face embedding space even in consecutive
frames. This issue can be mitigated by the method introduced
in the next section.
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Fig. 2: An example of vertical circular shift. The original im-
age is in the middle. The images from left to right correspond
to pixels shifted by -30, -15, 0, 15, 30 pixels.

2.3. Correlation Calculation

Given the response maps of the input video sequence, we ex-
ploit the correlation between pairs to find the optimal face lo-
cations. Instead of considering the correlation only between
two response maps, we apply circular shift to each response
map and average the correlation over all possible combina-
tions to find the optimal face location. The operation of cir-
cular shift is to shift the image patch in one direction, and
the pixels out of boundary are then warped back to fill the
pixels on the other side. Fig. 2 shows the concept of circu-
lar shift. Calculating the correlation for all circular shifts of
two response maps demands high computational complexity.
Henriques et al. [19] proposed that matrices which contain
circular shifts of data in each row can be made diagonal by ap-
plying Discrete Fourier Transform (DFT). With this property,
all operations in frequency domain are done element-wise on
the diagonal elements which greatly simplifies the computa-
tional complexity. Thus the optimal face location (a, b) be-
tween two response maps h and h′ is obtained by,

argmax
a,b

∑
d

F−1(ĥ∗d � ĥ′d) (5)

where ∗ denotes complex-conjugate, ĥ denotes the DFT of
h, and F is the DFT operation such that ĥ = F(h). An
inverse DFT is applied to the correlation of each channel d
of the response maps to transform them back to spatial do-
main. These correlation response maps from different chan-
nels are summed up and we target to find the coordinate (a, b)
with maximum correlation response. The faces in each pair
of response map are cropped by centering a bounding box
at (a, b) and the corresponding size is determined by the re-
gion that has response outside three standard deviations of
the mean. To fully utilize the correlation among the response
maps within video sequences, the face location of each frame
is obtained by averaging the coordinates (a, b) from all possi-
ble pairs within a window of length L.

We take advantage of the natural characteristics of video
to search for the position of faces that have the maximum cor-
related response among the response maps. Since there are
limited differences between consecutive frames, faces appear
in the previous frames tend to remain in the local neighbor-
hood, as a result only minor shifts are needed to cope with
the minor differences. By cropping strongly correlated faces,
consistent embeddings can be obtained to improve face recog-
nition performance.

Fig. 3: The automatically selected neurons and corresponding
response maps of frame images from four video sequences.

Fig. 4: Faces cropped by different approaches from the first
video of Aaron Eckhart. The top row is cropped by directly
finding the maximum response from independent frames. The
middle row is cropped by our proposed approach. The bottom
row is cropped by DPM. Faces are resized to the same scale.

3. EXPERIMENTS

3.1. Experimental Setup

We use the caffenet model proposed in [20] as the response
map generation model, and σ is set to 3 for the Gaussian ker-
nel. When calculating the correlations among response maps,
we set the overlapping window to length L = 4 and stride
L/2. Two public face recognition models, VGG deep face
(VGG) [6] and Lightened CNN B (LCNN) [7] are used to ex-
tract the face embeddings. The embedding vectors are of size
4,096 and 256 respectively for these two models. We input the
same video sequences to our proposed approach and DPM to
detect the faces and extract the embeddings for all cropped
faces. The performance is evaluated by reporting the accu-
racy which is defined as 100%−EER (Equal Error Rate) on
the YTF dataset following conventional settings and checking
the feature consistency within each video sequence. The fea-
ture consistency is measured by comparing the variance and
cosine similarities of consecutively/randomly sampled pairs
within the embeddings of each video sequence.

3.2. Results and Discussion

Qualitative results: Fig. 3 illustrates the response maps of
the automatically chosen neurons from four different video
sequences. The chosen neurons clearly reveal the silhouette
of the faces. Fig. 4 shows face images cropped by different
approaches. Our proposed approach crops more consistent
faces across the video sequence.
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Fig. 5: Histogram plots for the absolute value difference of the three indexes between our proposed approach and DPM. The
number of videos our proposed approach outperforms DPM are shown as the blue bins, and otherwise shown as the red bins.

Quantitative results: We evaluate the feature consistency
within each video sequence by calculating the absolute value
difference of three different indexes between our proposed ap-
proach and DPM, (i) variance, (ii) average cosine similarity of
consecutive pairs, and (iii) average cosine similarity of ran-
dom pairs. The distributions of the absolute value difference
are shown in Fig. 5, where the blue bins represent the num-
ber of videos that our proposed approach outperforms DPM,
and the red bins represent the number of videos DPM out-
performs ours. Embeddings extracted by our proposed ap-
proach have lower variance and higher cosine similarity in
most of the videos which reveals the consistency of our em-
beddings within each video sequence. The peak value of
the blue histograms are much larger than the red histograms,
which shows that when our proposed approach outperforms,
it improves the outcomes by a great margin.

Table 1: Comparison of our proposed approach and DPM
when using same face recognition models on YTF.

DPM Our proposed approach

Original Max Avg

VGG 87.8 88.8 88.9 88.9
LCNN 90.4 93.0 93.0 92.9

We apply two different regularization methods to the re-
sponse maps to preserve important information and compare
the results of the three approaches. (i) Original: The response
map generated from the deconvnet. (ii) Max: Only the pixel
with the maximum value among the depth of the original re-
sponse map is preserved. (iii) Avg: The value of each im-
age pixel is averaged across the depth of the original response
map. In Table 1, we compare the result of faces cropped by
our proposed approach and DPM on YTF dataset. Although
the original response maps show clear silhouette of the faces,
the activation on the three channels does not represent the
RGB values, it only reflects the intensity of the back propagat-
ing gradients from the chosen neuron. Thus the Max method

preserves larger activations and leads to better results. Ex-
tracting embeddings from faces cropped by our proposed ap-
proach consistently leads to better performance on both public
models which demonstrates the effectiveness of our proposed
approach.

Table 2: Comparison of state-of-the-art approaches on YTF.

Models #Net Accuracy

WebFace [16] 1 90.6
DeepFace [9] 1 91.4

LCNN [7] 1 91.6
VGG [6] 1 92.8
LCNN∗ 1 93.0

DeepID2+ [8] 25 93.2
FaceNet [10] 1 95.1

Table 2 demonstrates that if faces are cropped by our pro-
posed approach and the embeddings are extracted from the
same network structure (LCNN∗), the performance can be
greatly improved compared to the result in [7] and achieve
comparable result to state-of-the-art. Note that no prepro-
cessing methods are applied to the face images before ex-
tracting the embeddings, thus the performance can be further
improved if preprocessing methods such as 2D/3D face align-
ment are used.

4. CONCLUSION

In this paper, we target to enhance the face recognition per-
formance in videos by exploiting the correlation within re-
sponse maps generated from automatically selected neurons
to find the optimal face locations throughout video sequences.
Experiments show that embeddings generated from faces
cropped by our proposed approach are more consistent and
representative which significantly improve the baseline accu-
racy of the YTF dataset.
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