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ABSTRACT

In this paper, we present supervised fractional-order embedding
multiview canonical correlation analysis (SFEMCCA). SFEMCCA
is a CCA method realizing the following three points: (1) learning
noisy data with small number of samples and large number of dimen-
sions, (2) multiview learning that can integrate three or more kinds
of features, and (3) supervised learning using labels corresponding
to the samples. In real data, it is necessary to deal with high dimen-
sional noisy data with limited number of samples, and there are many
cases where three or more kinds of multimodal and supervised data
are treated in order to calculate more accurate projections. There-
fore, SFEMCCA, which takes the above advantages (1)–(3) into ac-
count, is effective for data obtained from real environments. From
experimental results, it was confirmed that accuracy improvements
using SFEMCCA were statistically significant compared to the sev-
eral conventional methods of supervised multiview CCA.

Index Terms— canonical correlation analysis, fractional-order
technique, feature extraction, multiview approach.

1. INTRODUCTION

In research fields such as computer vision, pattern recognition and
data visualization, many researchers have studied techniques to im-
prove their accuracy by integrating multiple features of different
characteristics. As one of the most famous methods, canonical
correlation analysis (CCA) [1] is widely used for the integration
of two kinds of features. CCA realizes effective feature integra-
tion by projecting each feature into a lower-dimensional canonical
space where a pair correlation is maximized. In order to integrate
features more accurately, several approaches such as locality pre-
serving CCA (LPCCA) [2] and discriminative CCA (DCCA) [3]
have been studied. For instance, LPCCA is a method extending
CCA by locality preserving projection (LPP) [4], which takes the
neighborhood structure into account. Moreover, supervised LPCCA
(SLPCCA) [5], which preserves the neighborhood structure in the
same class, has been proposed. On the other hand, DCCA is the
method extending CCA by Fisher discriminant analysis (FDA) [6],
which minimizes intra-class variance and maximizes inter-class vari-
ance. In addition, by integrating LPCCA and DCCA, they have been
extended to discriminative locality preserving CCA (DLPCCA) [7]
and its kernelized version (KDLPCCA) [8].

On the other hand, multiset CCA (MCCA) [9, 10], which maxi-
mizes the sum of three or more kinds of pair correlations, has been
proposed. MCCA has been applied to higher level of research fields
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since the method can integrate not only two kinds of features but also
three or more kinds of features. Moreover, by extending MCCA,
supervised multi-view CCA (sMVCCA) [11] that can take class in-
formation into account has been proposed. Note that “multi(-)view”
is the same as “multiset”. By using sMVCCA, we have also con-
ducted several researches to estimate videos that a target user likes
but has not watched yet [12, 13]. These methods integrate the fol-
lowing three kinds of features: features obtained from videos (video
features), sensing data obtained from target user’s behavior while
watching the videos (viewing behavior features) and evaluation
scores for the videos by the user (label features). Then the optimal
projections for the videos are calculated based on sMVCCA. By
using “canonical video features”, which are obtained by projecting
the original video features, successful video recommendation be-
comes feasible. By using not only video features but also viewing
behavior features and label features, it is possible to estimate the
personalized preference of the videos more accurately than using
only the original video features. In order to realize the estimation of
personalized video preference more accurately, it is required to use
a method which can integrate these features with higher accuracy.

Many CCA methods such as sMVCCA calculate the covari-
ance (including autocovariance) of all features and estimate the
optimal projections to transform each feature into the same lower-
dimensional space. These methods assume the estimation under
ideal conditions that the number of samples is sufficiently larger
than the number of dimensions. Moreover, estimation of the corre-
lation is performed on the assumption that the noise contained in the
data has small influence. However, such ideal data is different from
real data, and noise influences cannot be ignored. For example, in
the eigenvalue decomposition (EVD) of the covariance matrix cal-
culated from the data with noise, small number of samples and large
number of dimensions, it is statistically proven that the eigenvalues
become larger than those calculated from ideal data [14–16].

In order to solve this problem, a technique called “fractional-
order technique” has been reported in several studies [17–19]. For
example, fractional order singular value decomposition representa-
tion (FSVDR) [17] performs a correction that makes the covariance
matrix calculated from real data similar to the one calculated from
the ideal data. This method suppresses the increase of singular val-
ues by raising a fractional-order parameter (between 0 to 1) for sin-
gular values obtained by singular value decomposition (SVD) of the
covariance matrix. In [18], fractional-order embedding canonical
correlation analysis (FECCA) has been proposed. This method in-
troduces the fractional-order technique into CCA, and performs a
correction that makes the projections obtained from CCA of the real
data similar to the ones obtained from the CCA of the ideal data.
Herewith, in the experiments, the identification accuracy of images
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using the corrected projection is improved. Furthermore, FECCA
has been extended to fractional-order embedding multiset canonical
correlations (FEMCCs) [19], which can be applied to three or more
kinds of features.

In this paper, we propose supervised fractional-order embed-
ding multiview CCA (SFEMCCA), which newly introduces the
fractional-order technique into sMVCCA. sMVCCA does not take
into account the bad influences of noise disturbance, small number
of samples and large number of dimensions. The projections based
on such data differ from those based on the ideal data with the suf-
ficient number of samples, and the deviation has negative effect on
the estimation. On the other hand, our method (i.e., SFEMCCA)
solves this problem by suppressing the increase in eigenvalues of
covariance matrices. In real data, it is necessary to deal with high
dimensional noisy data with limited number of samples. In addition,
there are many cases where three or more kinds of multimodal and
supervised data are treated in order to calculate more accurate pro-
jections. Therefore, SFEMCCA is effective for data obtained from
real environments. Since the data used in our previous researches
also include the above-mentioned points, it will be effective to apply
the method to them.

2. RELATED WORKS

2.1. Canonical Correlation Analysis and Its Reguralization

First, we explain canonical correlation analysis (CCA) [1]. Given a
pair of matrices X ∈ RDx×N and Y ∈ RDy×N , covariance matrices Cmn

(m, n ∈ {x, y}) are calculated as follows:

Cmn =
1
N

N∑
i=1

(
mi − m

) (
ni − n

)T , (1)

where N is the number of samples, mi and ni are data obtained from
ith sample of a feature, m = (1/N)

∑N
i=1 mi, and Dx and Dy are the

dimensions of X and Y, respectively. In CCA, two optimal projec-
tion vectors ŵx ∈ RDx and ŵy ∈ RDy are calculated by the following
function:{

ŵx, ŵy

}
= arg maxwx ,wy

wT
x Cxywy

s.t. wT
x Cxxwx = 1, wT

y Cyywy = 1.
(2)

Then we can calculate the projection vectors in such a way that the
correlation of canonical variates ŵT

x X and ŵT
y Y is maximized. For

the constraints of Eq. (2), a method including regularization terms
such as Cmm → Cmm + ϵIDm is called regularized canonical cor-
relation analysis (RCCA) [20], where ϵ is a small parameter and
IDm ∈ RDm×Dm is the identity matrix. The regularization terms can
suppress over-fitting.

2.2. Multiset Canonical Correlation Analysis

Next, we explain multiset CCA (MCCA) [9, 10]. Given matrices
Xm ∈ RDm×N (m ∈ {m1,m2, · · · ,mM}) from M kinds of features for
integration, covariance matrices are calculated in the same manner as
Eq. (1). In MCCA, M kinds of optimal projection vectors ŵm ∈ RDm

are calculated by the following optimization:

{
ŵm1 , ŵm2 , · · · , ŵmM

}
= arg max

∀wm

∑
m

∑
n,m

wT
mCmnwn


s.t.

∑
m

wT
mCmmwm = 1.

(3)

In this way, by maximizing the sum of all pair correlations, CCA is
extended for integration of three or more kinds of features.

3. SUPERVISED FRACTIONAL-ORDER EMBEDDING
MULTIVIEW CANONICAL CORRELATION ANALYSIS

This section presents a novel canonical correlation analysis method,
supervised fractional-order embedding multiview canonical corre-
lation analysis (SFEMCCA). SFEMCCA is a method realizing the
following three points: (1) learning noisy data with small number
of samples and large number of dimensions, (2) multiview learning
that can integrate three or more kinds of features, and (3) supervised
learning using labels corresponding to the samples.

First, given matrices Xm ∈ RDm×N (m ∈ {m1,m2, · · · ,mM , L}),
autocovariance matrices Cmm and covariance matrices Cmn (m , n)
are calculated in the same manner as Eq. (1). Since SFEMCCA is
one of the supervised CCA methods, we use label features “XL”
besides M kinds of features. XL is a matrix obtained from DL-
dimensional one-hot vectors corresponding to each sample, where
DL is the number of classes. Next, the SVD is performed to the
autocovariance matrices and covariance matrices as follows:

Cmn = PmnΛmnQT
mn, (4)

Λmn = diag(λmn,1, λmn,2, · · · , λmn,Dmn ). (5)

In the above equations, Pmn = {pmn,1, pmn,2, · · · , pmn,Dmn
} and

Qmn = {qmn,1, qmn,2, · · · , qmn,Dmn
} are the left singular matrix and

the right singular matrix corresponding to Λmn, respectively, where
Dmn = rank(Cmn) and λmn,1 ≥ λmn,2 ≥ · · · ≥ λmn,Dmn . Note that the
SVD is equal to the EVD if m = n. In order to suppress the in-
crease of eigenvalues calculated by noisy data with small number of
samples and large number of dimensions, autocovariance matrices
and covariance matrices are reconstructed by using two kinds of
fractional-order parameters ξ and ζ (0 < ξ < 1 and 0 < ζ < 1) as
follows:

Λ̃mn =

diag(λξmn,1, λ
ξ
mn,2, · · · , λ

ξ
mn,Dmn

) if m = n

diag(λζmn,1, λ
ζ
mn,2, · · · , λ

ζ
mn,Dmn

) if m , n,
(6)

C̃mn = PmnΛ̃mnQT
mn. (7)

Next, we calculate the optimal projection vectors maximizing
the sum of all pair correlations by using C̃mm and C̃mn (m , n), which
were calculated by Eq. (7), as follows:

{
ŵm1 , ŵm2 , · · · , ŵmM , ŵL

}
= arg max

∀wm

∑
m

∑
n

wT
mC̃mnwn


s.t.

∑
m

wT
m(C̃mm + ϵIDm )wm = 1.

(8)

Then we apply the Lagrange multiplier method to Eq. (8), and the
following Lagrange function is obtained:

L(w, η) =
∑

m

∑
n

wT
mC̃mnwn

− η
1 −

∑
m

wT
m(C̃mm + ϵIDm )wm

 ,
(9)

where η is a Lanrange multiplier. The Lagrange function is trans-
formed by partial differentiations by all kinds of projection vectors
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as follows:

∂L
∂wm

= 2

∑
n

C̃mnwn − η
{
(C̃mm + ϵIDm )wm

} . (10)

The extremum values of partial differentiations of Eq. (9) is calcu-
lated from Eq. (10). Next, the optimization problem in Eq. (8) is
transformed into the following generalized eigenvalue problem:

0 C̃m1m2 · · · C̃m1mM C̃m1L

C̃m2m1 0 C̃m2mM C̃m2L

...
. . .

...

C̃mM m1 C̃mM m2 0 C̃mM L

C̃Lm1 C̃Lm2 · · · C̃LmM 0





wm1

wm2

...

wmM

wL



= ηd





C̃m1m1 0 · · · 0 0
0 C̃m2m2 0 0
...

. . .
...

0 0 C̃mM mM 0
0 0 · · · 0 C̃LL


+ ϵIDsum





wm1

wm2

...

wmM

wL


,

(11)

where Dsum =
∑
∀m Dm, η1 ≥ η2 ≥ · · · ≥ ηd ≥ · · · > ηD, and

D ≤ min{Dm}. Note that the ηd obtained by solving the above
generalized eigenvalue problem are eigenvalues. Moreover, we can
obtain the optimal projection matrix for each feature as follows:

Ŵm =
[
ŵm,1, ŵm,2, · · · , ŵm,D

] ∈ RDm×D. (12)

By using the above projection matrix, all features are projected to a
lower-dimensional canonical space to obtain the following canonical
features:

X̂m = Ŵ
T
m Xm

(
IN −

1
N

1N1T
N

)
∈ RD×N , (13)

where 1N = [1, · · · , 1]T is the N-dimensional vector that all elements
are 1. In this way, the fractional-order technique can be newly in-
troduced into sMVCCA. As we mentioned earlier, the projections
based on noisy data with small number of samples and large number
of dimensions differ from those based on the ideal data in the point
of the increase in eigenvalues of covariance matrices. On the other
hand, SFEMCCA suppresses them in Eq. (6) by using two kinds of
fractional-order parameters in order to solve the problem. Therefore,
SFEMCCA is effective for data obtained from real environments.

4. EXPERIMENTAL RESULTS

This section shows experimental results. In this experiment, we ver-
ify the performance of our method by applying it to estimation of
videos that an user likes [12, 13]. In this study, three kinds of fea-
tures (video features, viewing behavior features and label features)
are integrated, and a classifier is trained by using “canonical video
features”. Therefore, it is suitable to apply our method to this study.
First, the overview of the dataset used in this experiment is shown
in 4.1. Next, we explain experimental conditions in 4.2. Finally, we
show experimental results and their discussion in 4.3.

4.1. Dataset
In this experiment, three keywords, “movie”, “news” and “sports”,
were given as queries to YouTube. Five video clips were obtained

for each keyword; that is, 15 video clips (65 seconds for each video)
in total were prepared for the experiment. The subjects were eight
men and two women of about 22 years of age. The subjects watched
all of the video clips in a sitting position. A 15-inch display was
set at a distance of one meter from the subjects, and a Kinect sen-
sor to extract their viewing behavior was set on the display. Then
the subjects evaluated all of the video clips by five ordinal grades,
i.e., 5 (high preference), 4 (preference), 3 (undecided), 2 (low pref-
erence) and 1 (very low preference), by a console input using a key-
board. Note that three features (video, viewing behavior, label) used
in our method were extracted at 1 fps, and we did not extract features
for five seconds immediately after watching each video in order to
secure the time to adjust the users’ posture. In this way, a dataset
including the three features could be obtained. The overview of the
three features are shown below.

Video features (4241 dimensions):
We used an architecture of AlexNet [21] to extract the deep
convolutional neural network (DCNN)-based visual fea-
tures. Based on [22], features generated from 6th hidden
layer of AlexNet, which was learned by ImageNet [23],
(DeCAF6) were used in our method. We then obtained
4096-dimensional visual features by using Caffe [24] as open
source software of deep learning. Moreover, we adopted
145-dimensional audio features obtained by using MIR-
Toolbox [25], which consist of Dynamics, Spectral, Timbre,
Tonal and Rhythm. From the above, 4241-dimensional video
feature vectors were obtained for each sample.

Viewing behavior features (22 dimensions):
Viewing behavior features including facial features and body
movement features were obtained from each subject by us-
ing a Kinect sensor1. We extracted 14-dimensional facial fea-
tures by using facial expression descriptor based on Action
Units [26] and 8-dimensional body features from a subject’s
region and coordinates of the subject’s skeleton. From the
above, we obtained 22-dimensional viewing behavior feature
vectors for each sample. The details are shown in [12].

Label features (5 dimensions):
Each target subject evaluated all of the video clips in five or-
dinal grades while watching them. We obtained an evaluation
score of a sample of a video from the subject. This score
was converted into 5-dimensional one-hot label feature vec-
tors based on [11] for each sample.

The data used in this application includes the features with large
number of dimensions such as video features (4241 dimensions).
Moreover, it can be expected that some noise is mixed in viewing be-
havior features since the features are obtained by the sensor. There-
fore, it is effective to apply SFEMCCA to these data.

4.2. Experimental Conditions

For the three kinds of features, we applied our method (i.e., SFEM-
CCA) to obtain the canonical video features as shown in Eq. (13). In
our method, we empirically set ϵ = 0.01, D = 4 < min{4241, 22, 5},
ξ ∈ {0.6, 0.7, · · · , 1.0} and ζ ∈ {0.6, 0.7, · · · , 1.0} for all subjects. An
optimal set of the two parameters was determined for each subject.
We compared our proposed SFEMCCA with the following three
comparative methods: sMVCCA, DLPCCA and SLPCCA, which
are one of the state-of-the-art methods of supervised multiview CCA
as described earlier.

1http://www.microsoft.com/en-us/kinectforwindows/
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Table 1. A comparison between MAE and MZE values of SFEMCCA and those of the conventional supervised multiview CCA methods.
SFEMCCA sMVCCA [11] DLPCCA [7] SLPCCA [5]

Subjects MAE MZE MAE MZE MAE MZE MAE MZE
1 0.429 0.341 0.457 0.359 0.974 0.658 1.100 0.850
2 0.401 0.357 0.443 0.382 0.864 0.667 0.899 0.763
3 0.567 0.443 0.597 0.460 1.062 0.717 1.102 0.738
4 0.571 0.422 0.594 0.449 1.232 0.777 1.231 0.776
5 0.422 0.322 0.471 0.338 0.672 0.572 0.709 0.584
6 0.452 0.415 0.494 0.456 0.690 0.613 0.696 0.596
7 0.341 0.296 0.363 0.309 0.676 0.598 0.676 0.598
8 0.433 0.378 0.481 0.413 1.022 0.739 0.973 0.723
9 0.358 0.313 0.373 0.314 0.690 0.548 0.683 0.545

10 0.451 0.398 0.505 0.433 1.009 0.704 1.007 0.704
Average 0.443 0.369 0.478 0.391 0.889 0.659 0.908 0.688

In this experiment, support vector ordinal regression with im-
plicit constraints (SVORIM) [27] was learned by canonical video
features obtained by our method and the comparative methods to es-
timate unknown labels. In [28], it has been shown that SVORIM
is one of the most effective ordinal regression methods in terms of
Mean Absolute Error (MAE) and Mean Zero-one Error (MZE) as
follows:

MAE =
1
Nt

Nt∑
i=1

∣∣∣lPr
i − lGT

i

∣∣∣ , MZE =
1
Nt

Nt∑
i=1

[[lPr
i , lGT

i ]], (14)

where Nt is the number of test samples, lPr
i is the predicted evalua-

tion score of the ith sample, and lGT
i is the ground truth (real score

evaluated by the user) of the ith sample. Moreover, [[·]] is a Boolean
expression that outputs one if the inner condition lPr

i , lGT
i is true,

otherwise zero. The range of MAE values is from 0 to 4, and that of
MZE values is from 0 to 1. We can compare an average error by us-
ing MAE and accuracy without considering the order by using MZE.
The lower their values are, the higher the performance is. Note that
we adopted the Gaussian kernel in SVORIM, and an optimal set of
the kernel parameter and the constant parameter corresponding to the
best MAE was decided by a grid search [29]. In this experiment, we
conducted 15-fold cross-validation and compared the performance
of our method with the performances of comparative methods by
using MAE and MZE values.

4.3. Experimental Results and Discussion

Results presented in Table 1 show the effectiveness of SFEMCCA
since we can see that MAE and MZE of SFEMCCA are lower than
those of all comparative methods for all the subjects. Moreover, by
comparing sMVCCA with DLPCCA and SLPCCA, we can confirm
that using label features directly as one of the features is highly effec-
tive. Then we adopted Welch’s t-test to determine whether the differ-
ence between “MAE and MZE values of SFEMCCA” and “those of
comparative methods” was significant or not. As a result, it was con-
firmed that accuracy improvements of MAE and MZE using SFEM-
CCA were statistically significant under the significance level 0.01
compared to all of the conventional methods of supervised multiview
CCA.

Furthermore, we conducted an experiment to confirm whether
the fractional-order technique worked effectively in small number
of samples. In Fig. 1, we show the error corrections of ηd (i.e.,
eigenvalues) in Eq. (11), where “GT” means the eigenvalues cal-
culated by all samples extracted in these experiments (900 samples),
“nonFrac” means those calculated by one third of them (300 sam-
ples), and “Frac” means those calculated by 300 samples but the

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4

Δ
η

d

d
Comp: |GT - nonFrac| Ours: |GT - Frac|

Fig. 1. The error corrections of ηd by using fractional-order tech-
nique of SFEMCCA.

covariances are corrected by two kinds of fractional-order parame-
ters (ξ and ζ) in SFEMCCA. The setting to use “one third” follows
our previous works [12, 13]. Specifically, the number of samples
used to calculate projections is one third, and the number of sam-
ples used for training and test by SVORIM is two thirds (600 sam-
ples). If the differences of eigenvalues between “GT” and “Frac”
(i.e., |GT−Frac|) are lower than those between “GT” and “nonFrac”
(i.e., |GT − nonFrac|), it can be expected that fractional-order tech-
nique works effectively. As shown in Fig. 1, it can be confirmed that
the technique worked effectively since |GT−Frac| were close to zero
compared to |GT − nonFrac|. By suppressing eigenvalues of each
covariance matrix, ones obtained by solving the generalized eigen-
value problem in Eq. (11) were corrected to approach “GT”. These
error corrections worked effectively for classification of evaluation
scores for the videos. Thus, the results indicated that SFEMCCA
could extract the canonical video features more accurately.

5. CONCLUSIONS
In this paper, we presented supervised fractional-order embedding
multiview canonical correlation analysis (SFEMCCA). SFEMCCA
is a method that newly introduces the fractional-order technique into
sMVCCA. Our method (i.e., SFEMCCA) suppresses the increase
in eigenvalues of covariance matrices calculated by data with noise,
small number of samples and large number of dimensions. In the real
world, it is necessary to deal with such the data, and there are many
cases where three or more kinds of multimodal and supervised data
is treated in order to calculate more accurate projections. Therefore,
SFEMCCA is effective for data obtained from real environments.
Since our previous researches (e.g., estimation of personalized pref-
erence for video) also includes the above-mentioned points, experi-
mental results showed effectiveness of applying SFEMCCA to them.
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