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ABSTRACT
In this paper, we propose a joint framework for target lo-

calization and classification using a single generalized model
for non-imaging based multi-modal sensor data. For target
localization, we exploit both sensor data and estimated dy-
namics within a local neighborhood. We validate the capabil-
ities of our framework by using a multi-modal dataset, which
includes ground truth GPS information (e.g., time and posi-
tion) and data from co-located seismic and acoustic sensors.
Experimental results show that our framework achieves better
classification accuracy compared to recent fusion algorithms
using temporal accumulation and achieves more accurate tar-
get localizations than multilateration.

Index Terms— localization, classification, tracking, sen-
sor fusion, sensor networks.

1. INTRODUCTION

Automatic target localization and discrimination is critical for
border protection and surveillance settings, especially in re-
mote locations where it can be costly or logistically difficult to
employ human enforced security. A number of robust target
classification and localization algorithms using cameras have
been suggested (e.g., see [1]). However, computing both lo-
cation and class information from these types of devices can
be challenging. For example, image-based localization and
tracking solutions have several challenges to consider, such
as occlusions, fog, lighting variations, limited field of view,
and processing/power requirements.

Alternatively, we can consider using non-imaging sen-
sors, such as seismic and acoustic sensors, to perform both
target localization and classification. The Doppler effect
causes faster objects to generate signals with different signa-
tures compared to those of slower or stationary objects. The
Doppler effect in acoustic and seismic signals is significant
because acoustic and seismic signals have a slower wave
propagation speed compared to electromagnetic signals [2].
Dragoset showed that seismic signals can have phase dis-
persion caused by the Doppler effect [3]. Target velocities
can be estimated based on the Doppler shift and then used

to discriminate between people and vehicles and potentially
provide localization.

In this paper, we introduce a joint framework for track-
ing and classifying targets using acoustic and seismic signals
from multiple, locally distributed sensor nodes. This frame-
work is based on probabilistic confidence maps based on a
spatial accumulative framework from acoustic and seismic
signals to locate and classify target. Through extensive ex-
periments, we demonstrate that our proposed framework pro-
vides better localization than that of baseline multilateration-
based location estimation (e.g., beamforming). At the same
time, we show that our framework achieves better classifi-
cation performance than recent seismic and acoustic fusion
approaches in [4].

A distinguishing aspect of our work is that we provide
a framework that can be used for a classification and local-
ization of targets simultaneously using multiple sensor nodes
with a singular generalized model, which can be applied to
every node in a sensor network. By employing probabilis-
tic maps from acoustic, seismic, and estimated velocities, we
improve classification performance compared to our recent
work [4], and we provide a better localization (tracking) ca-
pability compared to multilateration-based methods.

Another distinguishing aspect of our work is that we val-
idate it by using actual data collected in an outdoor setting,
mimicking common operating environments and location in-
formation from GPS. For experiments, we employ acoustic
and seismic data that are synchronized with GPS signals col-
lected from the field. In contrast, many previous studies for
localization of acoustic and seismic signals employ simulated
signals to validate the work (e.g., see [2]), which can have
different characteristics compared to real-time datasets.

2. RELATED WORKS

Various algorithms have been proposed for target localiza-
tion using image-based or other modalities. These include
vehicle detection and tracking using acoustic and video sen-
sors [5]; location estimation using video, image, and audio
signals [6]; location estimation based on Received Signal
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Strength (RSS) [7–10]; confidence-based iterative localiza-
tion [11]; and target location estimation from detection of
dense sensor networks [12]. Our work differs by jointly
performing both classification and localization, and validat-
ing our approach under more challenging conditions using
sparsely distributed sensor nodes (e.g., 0.0025 sensors per
square meter).

Multilateration (see Figure 1) is a common approach
used for localization using wireless sensor networks (e.g.,
see [13, 14]). By using measured (or estimated) distances
from multiple sensors, the target position can be estimated.
The location of an unknown node (or target) can be estimated
based on the intersection of the distance from multiple nodes.
For example, Hefeeda et al. [15] provide an approach for
early detection of forest fires using multilateration. Damarla
et al. [16] provide a sniper localization method using the
time-difference-of-arrival (TDOA) between the muzzle blast
and the shock wave using multiple single-acoustic-sensor
nodes. Our work differs from these works in that we employ
a probabilistic score model instead of using estimated dis-
tances from nodes, and as emphasized previously, we provide
a joint framework for both localization and classification.

Several works estimate the motion of a target (mainly for
vehicles) from acoustic signals (e.g., see [17–19]) based on
the Doppler effect. While we employ estimated dynamics
from the Doppler Effect, our work differs from this earlier
work in that we use both acoustic and seismic signals, and we
provide not only localization but also classification. More-
over, we consider both people and vehicles. Incorporating de-
tection of peoples makes the problem significantly more chal-
lenging. This is because humans generate very small acoustic
and seismic signatures compared to vehicles.

In [4], an accumulative model is proposed to combine
multiple evidences over time to improve discriminability.
However, this introduces an unnecessary latency. Instead, we
propose an accumulative method using spatially distributed
sensors for improving discriminability.

3. JOINT LOCALIZATION AND CLASSIFICATION
FRAMEWORK

In this section, we describe a joint target localization and clas-
sification framework using estimated dynamics (velocities)
and multimodal data. We refer to this approach as Classifi-
cation and Localization using Estimated Dynamics and Mul-
timodal data (CLEDM). In this paper, we use acoustic and
seismic sensing modalities. However, the CLEDM frame-
work is not dependent on these modalities and we envision
that it can readily be adapted to other ones. Investigating such
adaptations is a useful direction for future work.

CLEDM is motivated by the Doppler effect, which en-
ables us to effectively estimate the velocity of the target that
is being tracked. Using a probabilistic confidence map to as-
sess the movement of the target using estimated velocities, we
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Fig. 1: Localization using multilateration.

estimate the next target location. We also apply the estimated
velocities to improve the performance of classification.

When training, modalities that exploit the Doppler effect
are required. We need the ground truth class and location of
the target corresponding to each signal segment in the training
dataset.

CLEDM decomposes time into windows (segments) of
some fixed duration ts. We use ts = 1sec in our experiments.
For i = 1, 2, . . ., we denote the starting time (ts × (i − 1))
of the ith segment by ti. Let Dα,i(τ) and Dσ,i(τ) denote
the acoustic and seismic signal, respectively, for the ith time
segment (0 ≤ τ < ts).

During the training process, since ground truth target lo-
cation information is given, we are able to calculate two types
of dynamics: a relative speed vr and an absolute speed va. We
use an x− y coordinate system to model the spatial layout of
the region of interest that is monitored by the given sensor
network. We assume that the origin in this coordinate system
is the location of an active sensor node ν that acquires the sig-
nals Dα and Dσ . If we denote the target location relative to ν
at tk by ~rk = (xk, yk), then the following expressions can be
used to determine vr and va:

vr =
|~ri+1| − |~ri|

ts
, and (1)

va =
|~ri+1 − ~ri|

ts
. (2)

Intuitively, vr is the estimated rate of change of the dis-
tance between the target and the sensor node ν. This rate of
change can be positive or negative. Similarly, va represents
the absolute speed of the target, which is independent of indi-
vidual sensor nodes.

Now suppose that Fα,i and Fσ,i represent extracted fea-
tures, such as cepstral features, from Dα,i and Dσ,i, respec-
tively, and let Ffs,i represent the concatenation [Fα,i, Fσ,i] of
these feature vectors. In this paper, we used 50 cepstral fea-
tures extracted from acoustic and seismic signals for Fα,i and
Fσ,i.

Then we formulate the following composite feature vector
Xi for time ti:
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Fig. 2: Grid map for estimating the next target location.

Xi = [Ffs,i, va, vr]. (3)

During the training process, we computeXi for each time
segment i of available training data. We assume that a ground
truth class label Yi is available as part of the training data for
each time segment i. Yi indicates whether the target is of class
person (A) or vehicle (B). After computing the Xi values,
we train a model H to classify between classes A and B. In
our experiments, we use a support vector machine (SVM) as
the model H , but the CLEDM methodology is not restricted
to SVMs and can readily be adapted to use other types of
models.

Based on the trained modelH , a real-valued classification
score Γ(Xi) can be calculated if Ffs , va, and vr are given.
The score is formulated such that sgn(Γ) represents the clas-
sification decision between classes A and B, and abs(Γ) rep-
resents the classification “confidence” of the associated pre-
diction. Here, sgn and abs represent the sign and absolute
value functions, respectively.

After trainingH , we assume that the initial target location
and the neighborhood N of sensors are known to initialize
the tracking component of our framework. From the current
target position at time ti, we can extract Fα,i, Fσ,i from Dα,i,
Dσ,i.

Around the current target position, which is located at a
distance of ~ri from a particular sensor, we define a grid G
discrete locations that represent potential target locations at
time ti+1. This grid map is illustrated in Figure 2. For a given
candidate target location p = (px, py) at time ti+1, we set
~ri+1 = (px, py), and then estimate va and vb from Eq. 2 and
1, respectively.

Next, using Eq. 3 and our trained model, we calculate the
feature vectorXi(p; ν) for the candidate next point p and sen-
sor ν.

Then, we calculate the classification score:

γ(p; ν) = Γ(Xi(p; ν)). (4)

We repeat this process to determine γ for all points p ∈ G.
For a sensor ν, we define the class-specific score functions δA
and δB over the domain G as follows:
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Fig. 3: Confidence maps for each node are shown on the
left. The spatial accumulation of these maps are shown on
the right.

δA(p; ν) =

{
|γ(p; ν)| if γ(p; ν) ≥ 0

0 if γ(p; ν)<0
(5)

δB(p; ν) =

{
0 if γ(p; ν) ≥ 0

|γ(p; ν)| if γ(p; ν)<0
(6)

Eq. 5 and 6 are derived based on a specific sensor node,
whose position is taken to be the origin of the coordinate
system in the associated derivations. When multiple sensor
nodes are present, these class- and node-specific score func-
tions can be summed across all of the nodes to yield proba-
bilistic confidence maps MA =

∑
ν∈N δA(p; ν) and MB =∑

ν∈N δB(p; ν) for the two classes A and B, respectively.
This is a form of spatial accumulation (across the avail-

able sensor nodes), which is different from the temporal ac-
cumulation applied in [4]. Figure 3 illustrates an example of
a probabilistic confidence map that is derived using this form
of spatial accumulation.

To predict the class of the target, we first determine for
each c ∈ {A,B} the maximum absolute value Zc within Mc

over all points in the grid G. Then if ZA ≥ ZB , the predicted
class is A; otherwise, it is B. Here, we arbitrarily select A as
the predicted class in case of a tie (ZA = ZB).

After classification, we calculate the centroid of the score
map Mκ that is associated with the predicted class κ. This
centroid is the next estimated location.

The whole process of joint classification and localization
described above is repeated iteratively to provide continuous
tracking.

4. EXPERIMENTS AND RESULTS

In this section, we present an experimental evaluation of the
proposed CLEDM framework. In our evaluation, we employ
16 multimodal sensor nodes that each collect acoustic and
seismic data. The nodes are grouped into 4 sets of 4 nodes
each and placed in a 20m × 20m square. The sets are de-
noted as Set 1 through Set 4. The placement of the nodes is
illustrated in Figure 4.

3078



road

20m

20m

Set 1 Set 2

Set 4 Set 3

Vehicles’ path

Walkers’ path

Sensor node

Fig. 4: Layout of sensor nodes.

Set 1 is used for training, and contains 1523 frames of
data. Sets 2–4 are used for testing, and contain a total of 1620
frames. Each frame contains 1 second of acoustic and seismic
data corresponding to a single target (person or vehicle). The
data within each frame is sampled at 4096Hz. Each frame
also contains GPS location data of the associated target. More
details about this dataset can be found in [20].

To evaluate classification performance between people
and vehicles, we compared classification accuracy among
single-modality, SVM-based classification; a state-of-the-art
multi-modal classification architecture called Accumulation
of Local Feature-level Fusion Scores (ALFFS) for acoustic
and seismic signals [4]; and our proposed CLEDM frame-
work. Table 1 shows the results of this comparison. The
columns labeled Acoustic and Seismic correspond to the
single-modality results. The results in Table 1 show that the
CLEDM framework provides superior accuracy.

Table 1: Accuracy comparison (%).

Acoustic Seismic ALFFS [4] CLEDM

Accuracy
(%) 77.654 77.222 79.753 81.852

To evaluate the tracking performance for people and vehi-
cles, we compared tracking using multilateration to our pro-
posed CLEDM approach. For this comparison, we used 44
tracks composed of 1620 data frames in total. For both algo-
rithms, only the first point is synchronized with ground truth,
so error increases as time goes on. Table 2 and 3 summarize
the results from our experiments on tracking performance.

For the multilateration-based baseline that we used in
these experiments, we employed a convolutional neural net-
work for the regression model. We used this model to esti-
mate the distances required for localization. We employed a
2-D convolutional layer with 20 filters of size 25 each fol-
lowed by a ReLU layer. We also employed a fully-connected

output layer of size 1, and a regression layer. In this net-
work model, the input data are formed by the concatenation
of acoustic and seismic data segments (1 seconds each in
duration), and the output is the estimated distance.

We compared the average error between ground truth and
estimated location, and the average maximum errors from all
44 tracks. We also compared the percentage of data segments
that have less than a certain amount of error: in Table 2 and 3,
err < Xm gives the percentage of tracks for which the error
was less than X meters.

The results in the two tables show that CLEDM has signif-
icantly better tracking performance compared to the baseline
localization approach overall, and especially favorable perfor-
mance for tracking people.

Table 2: Tracking performance comparison (people)

avg.
error
(m)

avg.
maximum
error (m)

err <3m
(%)

err <5m
(%)

err <10m
(%)

multilateration 6.979 9.385 15.552 28.852 76.599
CLEDM 2.897 4.787 58.552 86.483 99.927

Table 3: Tracking performance comparison (vehicle)

avg.
error
(m)

avg.
maximum
error (m)

err <5m
(%)

err <10m
(%)

err <20m
(%)

multilateration 7.064 12.877 41.177 72.549 97.712
CLEDM 6.244 10.309 43.791 72.026 100

5. CONCLUSION

In this paper, we have introduced a spatial accumulative
framework for both target classification and localization. We
leveraged signal phenomenology to estimate dynamics and
extract discriminative information, which is accumulated
across multiple nodes within a local neighborhood. Experi-
mental results have shown that our algorithm provides better
localization performance compared to a baseline localization
algorithm based on multilateration, while our algorithm also
achieves better classification performance compared to rele-
vant prior work. Specifically, CLEDM achieved an absolute
improvement of 2.099% in accuracy compared to the base-
line ALFFS approach on average. Also, CLEDM achieved
2.897 and 6.244 average error (meter) for people and vehi-
cles. Whereas, the baseline approach achieved 6.679 and
7.064 average error (meter) for people and vehicles. There-
fore, accumulating multiple evidences (e.g., dynamics, latent
information) across multiple sensors enhances target discrim-
ination and tracking capabilities.

3079



6. REFERENCES

[1] L. Meng and J. P. Kerekes, “Object tracking using high
resolution satellite imagery,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sens-
ing, vol. 5, no. 1, pp. 146–152, February 2012.

[2] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detec-
tion, classification, and tracking of targets,” IEEE Signal
Processing Magazine, vol. 19, no. 2, pp. 17–29, March
2002.

[3] W. H. Dragoset, “Marine vibrators and the Doppler ef-
fect,” GEOPHYSICS, vol. 53, no. 11, pp. 1388–1398,
1988.

[4] K. Lee, B. S. Riggan, and S. S. Bhattacharyya, “An ac-
cumulative fusion architecture for discriminating people
and vehicles using acoustic and seismic signals,” in Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing, March 2017, pp. 2976–
2980.

[5] R. Chellappa, G. Qian, and Q. Zheng, “Vehicle de-
tection and tracking using acoustic and video sensors,”
in 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, May 2004, vol. 3, pp.
iii–793–6 vol.3.

[6] G. Friedland, O. Vinyals, and T. Darrell, “Multimodal
location estimation,” in Proceedings of the ACM In-
ternational Conference on Multimedia, 2010, pp. 1245–
1252.

[7] B. Ferris, D. Hähnel, and D. Fox, “Gaussian processes
for signal strength-based location estimation,” in Pro-
ceeding of Robotics: Science and Systems, 2007, vol. 2,
pp. 303–310.

[8] Y. Y. Cheng and Y. Y. Lin, “A new received signal
strength based location estimation scheme for wireless
sensor network,” IEEE Transactions on Consumer Elec-
tronics, vol. 55, no. 3, pp. 1295–1299, August 2009.

[9] R. Niu and P. K. Varshney, “Target location estimation
in sensor networks with quantized data,” IEEE Trans-
actions on Signal Processing, vol. 54, no. 12, pp. 4519–
4528, December 2006.

[10] C. Feng, W. S. A. Au, S. Valaee, and Z. Tan, “Received-
signal-strength-based indoor positioning using com-
pressive sensing,” IEEE Transactions on Mobile Com-
puting, vol. 11, no. 12, pp. 1983–1993, December 2012.

[11] Z. Yang and Y. Liu, “Quality of trilateration:
Confidence-based iterative localization,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 21, no.
5, pp. 631–640, May 2010.

[12] A. Artes-Rodriguez, M. Lazaro, and L. Tong, “Target lo-
cation estimation in sensor networks using range infor-
mation,” in Processing of the IEEE Workshop on Sensor
Array and Multichannel Signal Processing, July 2004,
pp. 608–612.

[13] K. Langendoen and N. Reijers, “Distributed localization
in wireless sensor networks: a quantitative comparison,”
Computer Networks, vol. 43, no. 4, pp. 499 – 518, 2003,
Wireless Sensor Networks.

[14] A. Awad, T. Frunzke, and F. Dressler, “Adaptive dis-
tance estimation and localization in wsn using rssi mea-
sures,” in 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools, August 2007,
pp. 471–478.

[15] M. Hefeeda and M. Bagheri, “Wireless sensor networks
for early detection of forest fires,” in 2007 IEEE Interna-
tional Conference on Mobile Adhoc and Sensor Systems,
October 2007, pp. 1–6.

[16] T. Damarla, L. M. Kaplan, and G. T. Whipps,
“Sniper localization using acoustic asynchronous sen-
sors,” IEEE Sensors Journal, vol. 10, no. 9, pp. 1469–
1478, September 2010.

[17] B. G. Quinn, “Doppler speed and range estimation using
frequency and amplitude estimates,” The Journal of the
Acoustical Society of America, vol. 98, no. 5, pp. 2560–
2566, 1995.

[18] V. Cevher, R. Chellappa, and J. H. McClellan, “Vehicle
speed estimation using acoustic wave patterns,” IEEE
Transactions on Signal Processing, vol. 57, no. 1, pp.
30–47, January 2009.

[19] C. Couvreur and Y. Bresler, “Doppler-based motion es-
timation for wide-band sources from single passive sen-
sor measurements,” in 1997 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, April
1997, vol. 5, pp. 3537–3540 vol.5.

[20] S. M. Nabritt, T. Damarla, and G. Chatters, “Personnel
and vehicle data collection at Aberdeen proving ground
(APG) and its distribution for research,” Tech. Rep.
ARL-MR-0909, US Army Research Laboratory, Octo-
ber 2015.

3080


