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ABSTRACT

Recovering audio-visual synchronization is an important task
in the field of visual speech processing. In this paper, we
present a multi-modal regression model that uses a convolu-
tional neural network (CNN) for recovering audio-visual syn-
chronization of single-person speech videos. The proposed
model takes audio and visual features of multiple frames as
the input and predicts a drifted frame number of the audio-
visual pair which we input. We treat this synchronization task
as a regression problem. Thus, the model does not need to
search with a sliding window which would increase the com-
putational cost. Experimental results show that the proposed
method outperforms other baseline methods for recovered ac-
curacy and computational cost.

Index Terms— Audio-visual synchronization, visual
speech processing, neural networks

1. INTRODUCTION

Recently, video hosting websites and social networking ser-
vices spread widely. However, in some uploaded videos the
audio-visual synchronization drifts because of many reasons.
Our work focuses on recovering audio-visual synchronization
of single-person speech videos.

To recover audio-visual synchronization, Liu and Sato [1]
proposed a method that uses quadratic mutual information
(QMI). Their method computes QMI between audio and vi-
sual features, and uses it as the correlation value to determine
whether the audio and video are synchronized correctly or
not. They use the vertical optical flows of speaking lip image
sequences as the visual feature. We also use the optical flow
extracted from speaking lip image sequences.

The optical flow is calculated with the changes in the in-
tensity of each pixel. Consequently, the outside of the lip
area, which has little correlation with the speaker’s voice, can
adversely affect the result. To prevent this, we use the convo-
lutional neural network (CNN) to properly weight the optical
flow region and extract the feature. In related work that uses
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Fig. 2. The regression approach.

the CNN to extract the lip image feature, Assael et al. [2] and
Chung et al. [3] showed state-of-the-art lip-reading results. In
addition, Ephrat and Peleg [4] showed the CNN-based model
generating acoustic speech audio from video frames. In con-
trast, we propose a model that takes visual and audio infor-
mation as the input and predicts the drifted frame number.

For a multi-modal CNN that takes audio-visual informa-
tion as the input, Arandjelovic and Zisserman [5] attempted to
compute the correlation between a video frame and the audio.
However, here we consider not only spatial but also tempo-
ral features by taking multi-frame visual information as the
input.

Here, we define two audio-visual synchronization ap-
proaches, the sliding window approach and the regression
approach. The sliding window approach is a naı̈ve algorithm
to find the correct position of the audio sequence outlined in
Fig. 1. First, we calculate correlation values for all possible
audio frames with a sliding window. Then, we let the frame
number with the highest correlation value be the drifted frame
number. In this approach, we have to shift the audio sequence
and compute the correlation values for each frame; therefore,
we call this brute-force method the sliding window approach.
By this definition, Liu and Sato’s system [1] is classified as
the sliding window approach. The regression approach is
another approach for achieving audio-visual synchronization
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as shown in Fig. 2. This is the approach that pridicts the
drifted frame number only by looking at the corresponding
audio frame. We call this method which performs without a
sliding window as the regression approach. As long as the
computational cost is equivalent to the cost of calculating
every sliding window in the sliding window approach, the
regression approach can be faster. Our system outputs the
drifted frame number instead of a sort of correlation value so
this approach is classified as the regression approach. As far
as we know, this is first work based on this approach.

We propose a multi-modal regression CNN for audio-
visual synchronization for single-person speech videos. The
proposed model takes audio and visual features of multiple
frames as the input and outputs the drifted frame number. We
call the propsoed model WLOS (Watch, Listen Once, and
Sync).

Our contributions can be summarized as follows: (1) We
propose a novel architecture for recovering audio-visual syn-
chronization using a CNN. (2) We show the benefit of treating
audio-visual synchronization as a regression problem.

We also show experimental results that demonstrate the
proposed method outperforms other baseline methods.

2. APPROACH

In this section, we present a multi-modal regression CNN
for audio-visual synchronization for single-person speech
videos. This approach treats synchronization as a regression
problem. We input the audio and visual features of n-frame
into the multi-modal CNN to obtain the drifted frame num-
ber d as the output. If the audio and video entered in this
model are synchronized correctly, then the expected output
d is 0. Looking at only the n-frame audio-visual informa-
tion, the system can distinguish the drift as long as d satisfies
−(n− 1) ≤ d ≤ +(n− 1). We assume that n = 10 so that
−9 ≤ d ≤ +9.

2.1. Input feature representation

2.1.1. Visual feature

Similar to Chung et al. [3], we use a grayscale image as the
input of the proposed whole system.

We use facial alignment similar to LipNet [2] with fa-
cial landmarks detected by Kazemi and Sullivan’s method [6].
This obviates the need to consider the position-invariance net-
work; thus, that the system can focus on just extracting the lip
motions. We assume that this process performs well without
any failures. Fig. 3 (a) shows an example of detected facial
landmarks.

We assume that the mouth area has a stronger correlation
with the audio than the cheek area. Therefore, we use only an
area of a lip of spatial resolution 32× 32 as shown in Fig. 3
(b).

(a) Facial landmarks. (b) Cropped and aligned lip area.

Fig. 3. Images of a speaker’s face.

Similar to Liu and Sato [1], we consider that in speaking
a lip moves almost up and down. Therefore, we use vertical
elements of the optical flows. For each frame t, we compute
the optical flows between F t and a previous frame F t−1 with
the Gunnar Farneback method [7], where F t is the cropped
image of frame t. We also scale the optical flows to be in the
range [0, 1] per each mini-batch and use it as the visual feature
V t.

2.1.2. Audio feature

We use Mel-Frequency Cepstrum Coefficients (MFCCs) [8]
as the audio feature. MFCCs are a representation of the spec-
tral information in a short-term sound and have been used ex-
tensively in speech or speaker recognition because of a char-
acteristic; it takes human auditory sensitivity into considera-
tion. First, we apply the hamming window whose size is 256
to the audio. Then, we compute the 13 MFCCs and use 12
MFCCs except the very first MFCC which is not informative
about the actual spectral content. We normalize the MFCCs
to the range [0, 1] and use it as the audio feature A.

2.2. Network architectures

The proposed network consists of three networks which
are visual network, audio network and fusion network as
shown in Fig. 4. We treat the 10-frame optical flows
{V t, V t+1, ..., V t+9} extracted from {F t, F t+1, ..., F t+9}
as the input of the visual network. Simultaneously, we input
the corresponding audio features A into the audio network.
The two networks that use the CNN extract the feature vector
VF and AF from {F t, F t+1, ..., F t+9} and A, respectively.
We input a concatenated audio-visual feature [VF,AF ] into
the fusion network to obtain the drifted frame number d as
the output of the network using regression.

In this section, we explain the details about the proposed
network, WLOS.

2.2.1. Visual network

This network takes 10-frame optical flows {V t,V t+1,...,V t+9}
of spatial resolution 32× 32 as the input and extracts the 1024
dimensional feature vector VF .
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Fig. 4. WLOS network architecture.

The design of the visual network is mainly based on Lip-
Net [2]; therefore, we also use the three-dimensional (3D)
convolutional neural network (3D CNN) [9] after them. Re-
cently, a 3D CNN achieved remarkable results in an action
recognition task [9]. It enables us to take not only spatial but
also temporal representation into account to extract features.

We use two layers of 3× 3× 3 convolutions with a stride
of 1× 1× 1. The number of filters is 64 for the upper layer
and 32 for the lower layer. We also use two maximum pool-
ing layers with a stride of 1× 1× 1 to reduce the network pa-
rameters. The pooling sizes are 2× 2× 2 for the upper layer
and 1× 2× 2 for the other. The input tensor is convolved by
two 3D convolutional layers and flattened by the 1024 dimen-
sional fully-connected layer. We also apply batch normaliza-
tion [10] at the second convolutional layer to accelerate the
training. This network is trained with three-dimensional (3D)
spatial dropout [11] after every pooling layer at dropout rate
p = 0.5. All layers use the rectified linear unit (ReLU) as the
nonlinear activation function.

2.2.2. Audio network

The audio network takes the 39× 12 dimensional audio fea-
ture A as the input and extracts the 1024 dimensional feature
vector AF .

This network consists of traditional 2D convolutional lay-
ers. We use two layers of 2× 2 convolutions with a stride of
1× 1. The number of filters is 128 for the upper layer and 64
for the lower layer. We also use two maximum pooling lay-
ers with a stride of 1× 1 to reduce the network parameters.
The pooling sizes are 2× 2 for the upper layer and 1× 2 for

the lower layer. As with the visual network, we apply batch
normalization [10] at the second convolutional layer. The in-
put tensor is convolved by two 2D convolutional layers and
flattened by the 1024 dimensional fully-connected layer. All
layers use ReLU as the nonlinear activation function.

2.2.3. Fusion network

Using regression, the fusion network predicts the drifted
frame number d. It takes the 2048 dimensional audio-visual
feature vector AVF as the input where AVF is a concatenated
audio-visual feature [VF,AF ]. This network consists of three
fully-connected layers. Because this is designed for solving
the regression problem, the final fully-connected layer has
one dimension and linear activation. All layers except the
very final one use ReLU as the nonlinear activation function.

2.3. Fine-tuning

We use pre-trained weights as the initial weights of the vi-
sual network and the audio network. The network for pre-
training takes the audio and visual information the same as
WLOS and predicts whether the audio and visual information
are correlated or not. Therefore, this solves the binary clas-
sification problem. We call this network classification corre-
lation CNN (C3). The architecture of C3 is completely the
same as WLOS except the fusion network. The fusion net-
work of C3 is composed of two fully-connected layers. The
dimension of the penultimate layer (input of the fusion net-
work) is 1024 and that of the other layer (output) is 2. They
are activated with ReLU and Softmax functions, respectively.
Before training WLOS, we train the C3 network with audio-
visual pairs, including correlated and uncorrelated pairs, to
minimize the cross-binary entropy. Then, we remove the all
of the fusion network of C3, connect the fusion network of
WLOS, and train it.

3. EXPERIMENTS

3.1. Dataset

We made intentionally drifted audio-visual data similar to Liu
and Sato. We constructed a dataset with the GRID Corpus
[12]. The GRID Corpus [12] contains audio and video clips of
1000 sentences spoken by 34 subjects, labeled S1 to S34. This
dataset is widely used for lip-reading tasks. All videos have a
3 second duration with a frame rate of 25 FPS. We performed
experiments on the first two men (S1, S2) and women (S4, S7)
in numerical order.

We extracted the face regions of all videos by using the
HoG (histogram of oriented gradients)-based [13] face detec-
tor build with Dlib [14] for the first frame and using the KCF
(kernelized correlation filters) tracker [15] for the ramaining
frames. We divided the video and audio sequences into blocks
by shifting them sequentially, frame by frame. Each block
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has 10 frames. The frame duration is the same as the video
sequence, 25 FPS, as the audio sampling rate is higher than
that of video. At this time, we ignored blocks whose maxi-
mum MFCC value is lower than the threshold as they contain
no speech.

We generated the audio-visual pairs including −9- to +9-
frame drifted pairs for each video block. Thus, a video block
creates 19 pairs. As a result, we have 63739 pairs for S1,
64000 pairs for S2, 63992 pairs for S4, and 63997 pairs for
S7. We skipped 261 pairs for S1, 8 pairs for S4, and 3 pairs
for S7 because of face detection or facial alignment errors.

3.2. Baseline Methods

To evaluate the proposed method, we developed three base-
line methods.

The first method is based on Liu and Sato’s method [1]
using kernel density estimation (KDE) and QMI. In this base-
line method, we compute QMI between the 10-frame optical
flows and the power of the corresponding audio as shifting the
audio from −9 frames to +9 frames to find the position with
the highest correlation.

The second method uses the C3 network which is used
to pre-train the WLOS network. C3 outputs the probability
that the video and the audio are correlated. Similar to the first
method, we compute the probabilities as shifting the audio
from −9 frames to +9 frames and determine the audio posi-
tion most correlated with a video block. Both methods use
sliding windows so these methods are classified as the sliding
window.

The third method is the same as the proposed method
except the method of initializing network weights. In this
method, we train the WLOS network from scratch to evaluate
the influence of the pre-training. This method is classified as
the regression approach.

3.3. Training details

For the training data, we randomly sampled 80% of the
dataset and used the remaining data for validation. We opti-
mized the network using the stochastic gradient descent [16]
with a learning rate of 10−4, a momentum of 0.9, and a decay
of 10−5. We also used mini-batches containing 4096 samples
per iteration. We trained the network until the validation loss
no longer decreased, around 2000 iterations.

3.4. Results

Table 1. shows the mean absolute errors of computing drifted
frame number d for the validation dataset with each method,
from QMI to WLOS with fine-tuning. This table also shows
dataset-wise results from S1 to S7.

WLOS with fine-tuning, the proposed method, outper-
formed the other baseline methods. In comparison with the
QMI method and other CNN-based methods, the CNN can

Table 1. Mean absolute error (frame).
Method S1 S2 S4 S7

QMI (based on [1]) 6.305 6.494 6.196 6.479
C3 1.352 2.134 2.983 1.019

WLOS (scratch) 0.937 1.003 1.116 0.848
WLOS (fine-tune) 0.907 0.916 1.038 0.799

perform well to extract good features for audio-visual syn-
chronization. Comparing the WLOS trained from scratch and
the WLOS with fine-tuning, we can also see a positive effect
of pre-training.

In addition, WLOS can determine the drifted frame num-
ber approximately 19 times faster than C3 because WLOS
does not use a sliding window. Synchronizing a frame with
WLOS, C3, and QMI took 1.80 ms, 34.00 ms, and 46.07 ms,
respectively. The time measurement was done for the whole
S1 dataset with Nvidia TITAN X (Pascal) and Intel Core i7-
6900K. This result is theoretically correct because we move
the sliding window for 19 frames in the sliding window ap-
proach under the condition of n = 10.

4. CONCLUSION

We proposed a multi-modal regression CNN for recovering
audio-visual synchronization. We also introduced baseline
methods, and the results show that the proposed method per-
forms better than the baseline methods. The proposed ap-
proach enables us to recover errors without searching with
a sliding window which would increase computational cost.
The experimental result also shows that CNN-based methods
perform well in comparison with other methods based on pre-
vious research.

In future work, we will make it possible to correct audio-
visual synchronization errors of general videos instead of
speech videos.
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