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ABSTRACT

A domain adaptation method for urban scene segmentation is pro-
posed in this work. We develop a fully convolutional tri-branch
network, where two branches assign pseudo labels to images in the
unlabeled target domain while the third branch is trained with su-
pervision based on images in the pseudo-labeled target domain. The
re-labeling and re-training processes alternate. With this design, the
tri-branch network learns target-specific discriminative representa-
tions progressively and, as a result, the cross-domain capability of
the segmenter improves. We evaluate the proposed network on large-
scale domain adaptation experiments using both synthetic (GTA) and
real (Cityscapes) images. It is shown that our solution achieves the
state-of-the-art performance and it outperforms previous methods by
a significant margin.

Index Terms— Domain Adaptation, Semantic Segmentation,
Urban Scene, Tri-training

1. INTRODUCTION

Semantic segmentation for urban scenes is an important yet chal-
lenging task for a variety of vision-based applications, including au-
tonomous driving cars, smart surveillance systems, etc. With the
success of convolutional neural networks (CNNs), numerous suc-
cessful fully-supervised semantic segmentation solutions have been
proposed in recent years [1, 2]. To achieve satisfactory performance,
these methods demand a sufficiently large dataset with pixel-level
labels for training. However, creating such large datasets is pro-
hibitively expensive as it requires human annotators to accurately
trace segment boundaries. Furthermore, it is difficult to collect traf-
fic scene images with sufficient variations in terms of lighting con-
ditions, weather, city and driving routes.

To overcome the above-mentioned limitations, one can utilize
the modern urban scene simulators to automatically generate a large
amount of synthetic images with pixel-level labels. However, this
introduces another problem, i.e. distributions mismatch between
the source domain (synthesized data) and the target domain (real
data). Even if we synthesize images with the state-of-the-art simula-
tors [3, 4], there still exists visible appearance discrepancy between
these two domains. The testing performance in the target domain
using the network trained solely by the source domain images is
severely degraded. The domain adaptation (DA) technique is devel-
oped to bridge this gap. It is a special example of transfer learning
that leverages labeled data in the source domain to learn a robust
classifier for unlabeled data in the target domain. DA methods for
object classification have several challenges such as shifts in light-
ing and variations in object’s appearance and pose. There are even
more challenges in DA methods for semantic segmentation because

of variations in the scene layout, object scales and class distribu-
tions in images. Many successful domain-alignment-based methods
work for DA-based classification but not for DA-based segmenta-
tion. Since it is not clear what comprises data instances in a deep
segmenter [5], DA-based segmentation is still far from its maturity.

In this work, we propose a novel fully convolutional tri-branch
network (FCTN) to solve the DA-based segmentation problem. In
the FCTN, two labeling branches are used to generate pseudo seg-
mentation ground-truth for unlabeled target samples while the third
branch learns from these pseudo-labeled target samples. An alternat-
ing re-labeling and re-training mechanism is designed to improve the
DA performance in a curriculum learning fashion. We evaluate the
proposed method using large-scale synthesized-to-real urban scene
datasets and demonstrate substantial improvement over the baseline
network and other benchmarking methods.

2. RELATED WORK

The current literatures on visual domain adaptation mainly focus on
image classification [6]. Being inspired by shallow DA methods,
one common intuition of deep DA methods is that adaptation can
be achieved by matching the distribution of features in different do-
mains. Most deep DA methods follow a siamese architecture with
two streams, representing the source and target models. They aim
to obtain domain-invariant features by minimizing the divergence of
features in the two domains and a classification loss [7, 8, 9, 10],
where the classification loss is evaluated in the source domain with
labeled data only. However, these methods assume the existence of
a universal classifier that can perform well on samples drawn from
whichever domain. This assumption tends to fail since the class cor-
respondence constraint is rarely imposed in the domain alignment
process. Without such an assumption, feature distribution match-
ing may not lead to classification improvement in the target domain.
The ATDA method proposed in [11] avoids this assumption by em-
ploying the asymmetric tri-training. It can assign pseudo labels to
unlabeled target samples progressively and learn from them using a
curriculum learning paradigm. This paradigm has been proven ef-
fective in the weakly-supervised learning tasks [12] as well.

Previous work on segmentation-based DA is much less. Hoff-
man et. al [13] consider each spatial unit in an activation map of
a fully convolutional network (FCN) as an instance, and extend the
idea in [9] to achieve two objectives: 1) minimizing the global do-
main distance between two domains using a fully convolutional ad-
versarial training and 2) enhancing category-wise adaptation capa-
bility via multiple instance learning. The adversarial training aims
to align intermediate features from two domains. It implies the ex-
istence of a single good mapping from the domain-invariant feature
space to the correct segmentation mask. To avoid this condition,
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Fig. 1: An overview of the proposed fully convolutional tri-branch network (FCTN). It has one shared base network denoted by F followed
by three branches of the same architecture denoted by F1, F2 and Ft. Branches F1 and F2 assign pseudo labels to images in the unlabeled
target domain, while branch Ft is trained with supervision from images in the pseudo-labeled target domain.

Zhang et. al [5] proposed to predict the class distribution over the en-
tire image and some representative super pixels in the target domain
first. Then, they use the predicted distribution to regularize network
training. In this work, we avoid the single good mapping assump-
tion and rely on the remarkable success of the ATDA method [11]. In
particular, we develop a curriculum-style method that improves the
cross-domain generalization ability for better performance in DA-
based segmentation.

3. PROPOSED DOMAIN ADAPTATION NETWORK

The proposed fully convolutional tri-branch network (FCTN) model
for cross-domain semantic segmentation is detailed in this sec-
tion. The labeled source domain training set is denoted by S =
{(xsi , ysi )}ns

i=1 while the unlabeled target domain training set is de-
noted by T = {xti}nt

i=1, where x is an image, y is the ground truth
segmentation mask and ns and nt are the sizes of training sets of
two domains, respectively.

3.1. Fully Convolutional Tri-branch Network Architecture

An overview of the proposed FCTN architecture is illustrated in Fig.
1. It is a fully convolutional network that consists of a shared base
network (F ) followed by three branch networks (F1, F2 and Ft).
Branches F1 and F2 are labeling branches. They accept deep fea-
tures extracted by the shared base net, F , as the input and predict
the semantic label of each pixel in the input image. Although the
architecture of the three branches are the same, their roles and func-
tions are not identical. F1 and F2 generate pseudo labels for the
target images based on prediction. F1 and F2 learn from both la-
beled source images and pseudo-labeled target images. In contrast,
Ft is a target-specific branch that learns from pseudo-labeled target
images only.

We use the DeepLab-LargeFOV (also known as the DeepLab
v1) [14] as the reference model due to its simplicity and superior
performance in the semantic segmentation task. The DeepLab-
LargeFOV is a re-purposed VGG-16 [15] network with dilated con-
volutional kernels. The shared base network F contains 13 convolu-
tional layers while the three branche networks are formed by three
convolutional layers that are converted from fully connected layers
in the original VGG-16 network. Although the DeepLab-LargeFOV

is adopted here, any effective FCN-based semantic segmentation
framework can be used in the proposed FCTN architecture as well.

3.2. Encoding Explicit Spatial Information

Being inspired by PFN [16], we attach the pixel coordinates as the
additional feature map to the last layer of F . The intuition is that the
urban traffic scene images have structured layout and certain classes
usually appear in a similar location in images. However, a CNN is
translation-invariant by nature. That is, it makes prediction based on
patch-based feature regardless of the patch location in the original
image. Assume that the last layer in F has a feature map of size
H ×W × D, where H , W and D are the height, width and depth
of the feature map, respectively. We generate two spatial coordinate
maps X and Y of size H × W , where values of X(px, py) and
Y (px, py) are set to be px/W and py/H for pixel p at location
(px, py), respectively. We concatenate spatial coordinate maps X
and Y to the original feature maps along the depth dimension. Thus,
the output feature maps are of dimension H ×W × (D + 2). By
incorporating the spatial coordinate maps, the FCTN can learn more
location-aware representations.

3.3. Assigning Pseudo Labels to Target Images

Being inspired by the ATDA method [11], we generate pseudo la-
bels by feeding images in the target domain training set to the FCTN
and collect predictions from both labeling branches. For each in-
put image, we assign the pseudo-label to a pixel if the following
two conditions are satisfied: 1) the classifiers associated with la-
beling branches, F1 and F2, agree in their predicted labels on this
pixel; 2) the higher confidence score of these two predictions ex-
ceeds a certain threshold. In practice, the confidence threshold is set
very high (say, 0.95 in our implementation) because the use of many
inaccurate pseudo labels tends to mislead the subsequent network
training. In this way, high-quality pseudo labels for target images
are used to guide the network to learn target-specific discriminative
features. The pseudo-labeled target domain training set is denoted
by Tl = {(xti, ŷti)}nt

i=1, where ŷ is the partially pseudo-labeled seg-
mentation mask. Some sample pseudo-labeled segmentation masks
are shown in Fig. 2. In the subsequent training, the not-yet-labeled
pixels are simply ignored in the loss computation.
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Fig. 2: Illustration of pseudo labels used in the 2-round curriculum
learning in the GTA-to-Cityscapes DA experiments. The first row
shows the input images. The second row shows the ground truth
segmentation masks. The third and fourth row shows the pseudo
labels used in the first and second round of curriculum learning, re-
spectively. Note in the visualization of pseudo labels, white pixels
indicate the unlabeled pixels. Best viewed in color.

3.4. Loss Function

Weight-Contrained Loss. As suggested in the standard tri-training
algorithm [17], the three classifiers in F1, F2 and Ft must be diverse.
Otherwise, the training degenerates to self-training. In our case, one
crucial requirement to obtain high-quality pseudo-labels from two
labeling branches F1 and F2 is that they should have different views
on one sample and make decisions on their own.

Unlike the case in the co-training algorithm [18], where one can
explicitly partition features into different sufficient and redundant
views, it is not clear how to partition deep features effectively in
our case. Here, we enforce divergence of the weights of the convo-
lutional layers of two labeling branches by minimizing their cosine
similarity. Then, we have the following filter weight-constrained loss
term:

Lw =
~w1 · ~w2

‖ ~w1‖ ‖ ~w2‖
(1)

where ~w1 and ~w2 are obtained by the flattening and concatenating
the weights of convolutional filters in convolutional layers of F1 and
F2, respectively.

Weighted Pixel-wise Cross-entropy Loss. In the curriculum
learning stage, we take a minibatch of samples with one half from
S and the other half from Tl at each step. We calculate the segmen-
tation losses separately for each half of samples. For the source do-
main images samples, we use the vanilla pixel-wise softmax cross-
entropy loss, denoted by LS , as the segmentation loss function.

Furthermore, as mentioned in Sec. 3.3, we assign pseudo la-
bels to target domain pixels based on predictions of two labeling
branches. This mechanism tends to assign pseudo labels to the
prevalent and easy-to-predict classes, such as the road, building,
etc., especially in the early stage (this can be seen in Fig. 2). Thus,
the pseudo labels can be highly imbalanced in classes. If we treat
all classes equally, the gradients from challenging and relatively rare
classes will be insignificant and the training will be biased toward
prevalent classes. To remedy this, we use a weighted cross-entropy
loss for target domain samples, denoted by LTl . We calculate
weights using the median frequency balancing scheme [19], where

the weight assigned to class c in the loss function becomes

αc =
median freq

freq(c)
, (2)

where freq(c) is the number of pixels of class c divided by the
total number of pixels in the source domain images whenever c
is present, and median freq is the median of these frequencies
{freq(c)}Cc=1, and where C is the total number of classes. This
scheme works well under the assumption that the global class distri-
butions of the source domain and the target domain are similar.

Total Loss Function. There are two stages in our training pro-
cedure. We first pre-train the entire network using minibatches from
S so as to minimize the following objective function:

L = αLw + LS (3)

Once the curriculum learning starts, the overall objective function
becomes

L = αLw + LS + βLTl (4)

where LS is evaluated on S and averaged over predictions of F1 and
F2 branches, LTl is evaluated on Tl and averaged over predictions of
all three top branches, and α and β are hyper-parameters determined
by the validation split.

3.5. Training Procedure

The training process is illustrated in Algorithm 1. We first pretrain
the entire FCTN on the labeled source domain training set S for
iters iterations, optimizing the loss function in Eq. (3). We then
use the pre-trained model to generate the initial pseudo labels for
the target domain training set T , using the method described in Sec.
3.3. We re-train the network using S and Tl for several steps. At
each step, we take a minibatch of samples with half from S and half
from Tl, optimizing the terms in Eq. (4) jointly. We repeat the re-
labeling of T and the re-training of the network for several rounds
until the model converges.

Algorithm 1 Training procedure for our fully convolutional tri-
branch network (FCTN).

Input: labeled source domain training set S = {(xsi , ysi )}ns
i=1 and

unlabeled target domain training set T = {xti}nt
i=1

Pretraining on S :
for i = 1 to iters do

train F, F1, F2, Ft with minibatches from S
end for
Curriculum Learning with S and T :
for i = 1 to rounds do
Tl ← LABELING(F, F1, F2, T ) . See Sec. 3.3
for k = 1 to steps do

train F, F1, F2 with samples from S
train F, F1, F2, Ft with samples from Tl

end for
end for
return F, Ft

4. EXPERIMENTS

We validate the proposed method by experimenting the adapta-
tion from the recently built synthetic urban scene dataset GTA [3]
to the commonly used urban scene semantic segmentation dataset
Cityscapes [20].
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No Adapt 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.1
FCN [13] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
No Adapt 18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3
CDA [5] 26.4 22.0 74.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 27.8
No Adapt 59.7 24.8 66.8 12.8 7.9 11.9 14.2 4.2 78.7 22.3 65.2 44.1 2.0 67.8 9.6 2.4 0.6 2.2 0.0 26.2
Round 1 66.9 25.6 74.7 17.5 10.3 17.1 18.4 8.0 79.7 34.8 59.7 46.7 0.0 77.1 10.0 1.8 0.0 0.0 0.0 28.9
Round 2 72.2 28.4 74.9 18.3 10.8 24.0 25.3 17.9 80.1 36.7 61.1 44.7 0.0 74.5 8.9 1.5 0.0 0.0 0.0 30.5

Table 1: Adaptation from GTA to Cityscapes. All numbers are measured in %. The last three rows show our results before adaptation, after
one and two rounds of curriculum learning using the proposed FCTN, respectively.

Input Image Ground Truth No Adapt Ours

Fig. 3: Domain adaptation results from the Cityscapes Val set. The third column shows segmentation results using the model trained solely
by the GTA dataset, and the fourth column shows the segmentation results after two rounds of the FCTN training (best viewed in color).

Cityscapes [20] is a large-scale urban scene semantic seg-
mentation dataset. It provides over 5,000 finely labeled images
(train/validation/test: 2,993/503/1,531), which are labeled with per
pixel category labels. They are with high resolution of 1024×2048.
There are 34 distinct semantic classes in the dataset, but only 19
classes are considered in the official evaluation protocol.

GTA [3] contains 24,966 high-resolution labeled frames ex-
tracted from realistic open-world computer games, Grand Theft
Auto V (GTA5). All the frames are vehicle-egocentric and the class
labels are fully compatible with Cityscapes.

We implemented our method using Tensorflow[21] and trained
our model using a single NVIDIA TITAN X GPU. We initialized
the weights of shared base net F using the weights of the VGG-16
model pretrained on ImageNet. The hyper-parameter settings were
α = 103, β = 100. We used a constant learning rate 10−5 in the
training. We trained the model for 70k, 13k and 20k iterations in
the pre-training and two rounds of curriculum learning, respectively.

We use synthetic data as source labeled training data and
Cityscapes train as an unlabeled target domain, while evaluating
our adaptation algorithm on Cityscapes val using the predictions
from the target specific branch Ft. Following Cityscapes official
evaluation protocol, we evaluate our segmentation domain adapta-
tion results using the per-class intersection over union (IoU) and
mean IoU over the 19 classes. The detailed results are listed in Ta-
ble. 1 and some qualitative results are shown in Fig. 3. We achieve

the state-of-the-art domain adaptation performance. Our two rounds
of curriculum learning boost the mean IoU over our non-adapted
baseline by 2.7% and 4.3%, respectively. Especially, the IoU im-
provement for the small objects (e.g. pole, traffic light, traffic sign
etc.) are significant (over 10%).

5. CONCLUSION

A systematic way to address the unsupervised semantic segmenta-
tion domain adaptation problem for urban scene images was pre-
sented in this work. The FCTN architecture was proposed to gen-
erate high-quality pseudo labels for the unlabeled target domain im-
ages and learn from pseudo labels in a curriculum learning fashion.
It was demonstrated by the DA experiments from the large-scale syn-
thetic dataset to the real image dataset that our method outperforms
previous benchmarking methods by a significant margin.

There are several possible future directions worth exploring.
First, it is interesting to develop a better weight constraint for the
two labeling branches so that even better pseudo labels can be gen-
erated. Second, we may impose the class distribution constraint on
each individual image [5] so as to alleviate the confusion between
some visually similar classes, e.g. road and sidewalk, vegetation and
terrain etc. Third, we can extend the proposed method to other tasks,
e.g. instance-aware semantic segmentation.
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