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ABSTRACT
This paper proposes a generative ScatterNet hybrid deep
learning (G-SHDL) network for semantic image segmenta-
tion. The proposed generative architecture is able to train
rapidly from relatively small labeled datasets using the in-
troduced structural priors. In addition, the number of filters
in each layer of the architecture is optimized resulting in a
computationally efficient architecture. The G-SHDL network
produces state-of-the-art classification performance against
unsupervised and semi-supervised learning on two image
datasets. Advantages of the G-SHDL network over super-
vised methods are demonstrated with experiments performed
on training datasets of reduced size.

Index Terms— SHDL, DTCWT, Semantic Image Seg-
mentation, Convolutional neural network.

1. INTRODUCTION

Semantic image segmentation is the task of partitioning and
labeling the image into pixel groups which belong to the same
object class. It has been widely used for numerous appli-
cations such as robotics [1], medical applications [2], aug-
mented reality [3], and automated driving [4].

In the recent years, three types of learning architectures
have been designed to learn the necessary representations
required to solve the semantic image segmentation task.
These methods include architectures that: (i) encode hand-
crafted features extracted from the input images into rich
non-hierarchical representations; (ii) learn multiple levels of
feature hierarchies from the input data; (iii) make use of the
ideas from both categories to extract feature hierarchies from
hand-crafted features.

He et al [5] is an example of the first class of architectures
which utilize handcrafted region and global label features
in multiscale conditional random fields to get the desired
semantic segmentation. The second class of architectures
includes Convolutional Neural Networks [6] and Deep Belief
Networks [7] that learn multiple layers of features directly
from the input images. These methods have been shown to
achieve state-of-the-art segmentation performance on var-
ious datasets [8]. Despite their success, their design and
optimal configuration is not well understood which makes
it difficult to develop them. In addition, the vast arrays of

network parameters can only be learned with the help of
powerful computational resources and large training datasets.
These may not be available for many applications such as
stock market prediction [9], medical imaging [2] etc. The
third class of models combine the concepts from both of the
above-mentioned models to learn shallow or deep feature
hierarchies from low-level hand-crafted descriptors. Yu [10]
learned multiple layers of hierarchical features from patch
descriptors using stacked denoising autoencoders. This class
of models has produced promising performance on various
datasets [10].

This paper proposes the Generative ScatterNet Hybrid
Deep Learning (G-SHDL) network with structural priors for
semantic image segmentation. The G-SHDL network is in-
spired by the ScatterNet Hybrid Deep Learning (SHDL) [12]
network. The SHDL network extracts handcrafted features
from the input image using the ScatterNet front-end which are
then used by the unsupervised learning based Stacked PCA
mid-section layers to learn hierarchical features. These hier-
archical features are finally used by the supervised back-end
module to solve the object classification task. The approxi-
mate minimization of the reconstruction loss function for the
PCA layers is obtained simply from the Eigen decomposition
of the image patches [13]. This results in rapid learning of
the hierarchical features. However we found that, despite the
favorable increase in the rate of learning, the approximate so-
lution of PCA loss function produces undesired checkerboard
filters which limit the performance of these models.

The proposed G-SHDL network is an improved version
of the SHDL network that uses ScatterNet as the front-end,
similar to the SHDL network, to extract hand-crafted features
from the input images. However, instead of PCA layers in the
middle section, the G-SHDL uses four stacked layers of con-
volutional Restricted Boltzmann Machine (RBM) with struc-
tural priors to learn an invariant hierarchy of features. These
hierarchy features are finally used by a supervised conditional
random field (CRF) to solve the more complicated task of se-
mantic segmentation as opposed to object recognition.

The main contributions of the paper are stated below:

• Rapid Structural Prior based Learning of RBM: Train-
ing of convolutional RBMs is slow as the partition func-
tion is approximated by sampling using MCMC (Sec-
tion 2.2). In order to accelerate the training, the filters
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Fig. 1. The proposed G-SHDL network uses the ScatterNet front-end to extract hand-crafted scatternet features from the input image at L0,
L1 and L2 using DTCWT filters at 2 scales and 6 fixed orientations (filters shown). The handcrafted features extracted at the three layers
are concatenated and given as input to the 4 stacked convolutional RBM layers (L3, L4, L5, L6) with 200, 150, 100 and 50 filters to learn
a hierarchy of features. Each RBM layer is initialized with PCA based structural priors with same number of filters which improves their
training as shown by L3 to L6 convergence graphs. The RBM layers are trained in a layer by layer greedy type fashion. Once a RBM layer is
trained the optimal number of filters are selected using 5 fold cross validation that results in a computationally efficient architecture (Table. 1)
as the later layers can feature from a smaller feature space. The features learned by the last RBM layer (L6) are used by the CRF for semantic
image segmentation. PCA layers can learn the undesired checkerboard filters (shown in red) which are avoided and not used as the prior for
the RBMs. In order to detect and remove the checkerboard filters from the learned filter set, we used the method defined in [11].

in each RBM layer are initialized with structural pri-
ors (filters) learned using PCA as opposed to random
initialization. This has been shown to accelerate the
training of RBMs (Fig. 1). Since, it is extremely fast
to learn the filters or structural priors using PCA (eigen
decomposition), the whole process is much faster than
training RBMs with random weight initialization.

• Computationally Efficient: The number of filters in a
particular RBM layer are optimized using crossvalida-
tion that results in a computationally efficient archi-
tecture as the filters in the subsequent layer are now
learned from a smaller feature space.

• Advantages over supervised learning: With G-SHDL
only a fraction of the training samples need to be la-
belled, whereas supervised networks require large la-
belled training datsets for effective training, which may
not be available [9, 10]). The requirement for relatively
small labeled datasets can be especially advantageous
for semantic segmentation tasks as it can be expensive
and time consuming to generate pixel-wise annotations.

G-SHDL network is used to perform semantic segmen-
tation on MSRC [14] and Stanford background (SB) [15]

datasets. The average segmentation accuracy for each class
for both datasets is presented. In addition, an extensive com-
parison of the proposed pipeline with other deep supervised
segmentation methods is demonstrated.

The paper is divided as follows: section 2 briefly presents
the proposed G-SHDL network, section 3 presents the exper-
imental results while section 4 draws conclusions.

2. PROPOSED G-SHDL NETWORK

The Generative ScatterNet Hybrid Deep Learning Network
(G- SHDL) is detailed below. The first subsection explains the
mathematical formulation of the ScatterNet while the second
subsection presents the stacked RBM mid-section layers with
PCA structural priors that learn hierarchical features. The fi-
nal sub-section explains the CRF supervised back-end that
uses the hierarchical features to produce the desired segmen-
tation. The G-SHDL network is presented in Fig. 1.

2.1. DTCWT ScatterNet

The parametric log based DTCWT ScatterNet [16] is used
to extract the relatively symmetric translation invariant hand-
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Fig. 2. The illustration shows the L6 RBM features thresholded
to the top 10, 20 and 30 activations and back-projected to the input
pixel space [18]. The L6 RBM features are most responsive to the
beaks of the birds, then feet and wings.

crafted features from the RBG input image.
Invariant features are obtained by filtering the input signal

x at the first layer (L1) with dual-tree complex wavelets [17,
28] λ1 = (j, r) at different scales (j) and six pre-defined ori-
entations (r) fixed to 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦. To
build a more translation invariant representation, a point-wise
L 2 non-linearity (complex modulus) is applied to the real and
imaginary (a and b) of the filtered signal. The parametric log
transformation layer is then applied to all the oriented repre-
sentations extracted at the first scale j = 1 with a parameter
kj=1, to reduce the effect of outliers by introducing relative
symmetry to the pdf [16], as shown below

U1[j] = log(U [j]+kj), U [j] =
√
|x ? ψaλ1

|2 + |x ? ψbλ1
|2,
(1)

Next, a local average is computed on the envelope
|U1[λm=1]| that aggregates the coefficients to build the de-
sired translation- invariant representation:

S[λm=1] = |U1[λm=1]| ? φ2J (2)

The high frequency components lost due to smoothing
are retrieved by cascaded wavelet filtering performed at the
second layer (L2). The retrieved components are again not
transla- tion invariant so invariance is achieved by first ap-
plying the L2 non-linearity to obtain the regular envelope fol-
lowed by a local-smoothing operator applied to the regular en-
velope (U2[λm=1, λm=2]) to obtain the desired second layer
(L2) coefficients with improved invariance:

S[λm=1, λm=2] = |U1[λm=1]| ? ψλ2 | ? φ2J (3)

The scattering coefficients obtained at each layer are:

S =

 x ? φ2J (L0)
U1[λm=1] ? φ2J (L1)

|U1[λm=1]| ? ψλ2 | ? φ2J (L2)


j=(2,3,4,5...)

(4)

ScatterNet features have been found to improve learning
and generalization in deep supervised networks [29].

2.2. Unsupervised Learning: RBM with Priors

The Scattering features extracted at (L0, L1, L2) are concate-
nated and given as input to 4 stacked convolutional restricted

Fig. 3. Figure shows two images from MSRC dataset with their
ground truth and segmentation obtained at L2 to L6 of G-SHDL.

Boltzmann machine (RBM) layers that learn 200, 150, 100
and 50 filters respectively. The RBM is a generative stochas-
tic neural network that learns a probability distribution over
the scattering features. Markov chain Monte Carlo (MCMC)
sampling in the form of Gibbs sampling is used to approx-
imate the likelihood and its gradient. The estimation of the
likelihood of the RBM or its gradient for inference is com-
putationally intensive [19]. However, initializing RBMs with
priors on the hidden layer instead of a random initialization
has been shown to improve the training [19].

We propose structural priors for each convolutional RBM
layer (L3 to L6) which have been shown to improve the train-
ing of the RBMs (Fig. 1 Graphs). The Structural priors are
obtained using the PCANet [13] layer that learns a family of
orthonormal filters by minimizing the following reconstruc-
tion error:

min
V ε Rz1z2×K

∥∥X − V V TX∥∥2
F
, s.t. V V T = IK (5)

where X are patches sampled from N training images (con-
catenated handcrafted features), IK is an identity matrix of
sizeK×K. The solution of eq. 5 in its simplified form repre-
sents K leading principal eigenvectors of XX T obtained using
Eigen decomposition. The PCA layers may learn undesired
checkerboard filters. In order to detect the checker-board fil-
ters from the learned filter set, we use the method defined
in [11]. These checkerboard filters are avoided as filter priors.
Each RBM layer (L3, L4, L5, L6) of the G-SHDL is trained
individually in a greedy fashion (with structural priors). Once
the RBM layer is trained the filters that learn redundant in-
formation are removed using 5 fold cross-validation. (Table 1
and section 3.2).

2.3. Supervised CRF Segmentation

Conditional Random Field (CRF) is a probabilistic graphi-
cal model that uses the features obtained from the L6 RBM
along with edge potentials computed on 4 pairwise connected
grids [20] to perform the desired segmentation. The segmen-
tation is obtained by minimizing the clique loss function with
Tree-Reweighted [20] inference that uses the LBFGS opti-
mization algorithm.
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Table 1. 5 fold cross validation performed on the training dataset of
Stanford background (SB) dataset to select optimal filters for L3 to
L6 RBM layers. L(size) = No. of Filters (a, a is equivalent to a× a)

Filters L3 (size) 43 (size) L5 (size) L6 (size)
PCA 200 (3,3) 150 (5,5) 100 (7,7) 50 (9,9)
RBM 200 (3,3) 150 (5,5) 100 (7,7) 50 (9,9)

Selected 139 110 83 47

3. OVERVIEW OF RESULTS

G-SHDL was evaluated and compared with other segmen-
tation frameworks on both MSRC [14] and Stanford Back-
ground (SB) [15] datasets. The MSRC dataset contains 591
images with 21 classes while the SB dataset is formed of 715
images with 8 classes, where each image in both datasets has a
resolution of 320×240. The quantitative results are presented
with the class pixel accuracy which represents the ratio of cor-
rect pixels computed in a per-class (PA) [8] basis and then av-
eraged over the total number of classes. The results are pre-
sented for 5-fold cross-validation for both datasets randomly
split into 45% training, 15% validation and 40% test images
for each fold. We provide a quantitative comparison against
the state-of-the-art to evaluate the performance of G-SHDL.

3.1. Handcrafted Front-end: ScatterNet

ScatterNet features are extracted from the input RGB im-
age using DTCWT filters at 2 scales and 6 fixed orientations.
Next, log transformation with parameter kj=1 = 1.1 is applied
to the representations obtained at the finer scale to introduce
relative symmetry. (Section. 2.1).

3.2. Unsupervised Mid-section: RBM with PCA priors

The four stacked convolutional RBM layers learn 200, 150,
100 and 50 filters respectively with PCA structural priors (ob-
tained by training on the handcrafted features) in a greedy
layer-wise fashion (Section 2.2). Once, each RBM layer is
trained, five-fold cross-validation (5-CV) is computed with
filters randomly selected from the trained filter set to eval-
uate the segmentation accuracies using CRF. We are able to
achieve similar PA accuracy on the 5-CV with the fewer num-
ber of filters than the complete learned filter set. This suggests
that some of the filters learn redundant information which can
be removed. This results in efficient learning of subsequent
layers as the filters are learned from a smaller feature space.
The numbers of selected filters are shown in Table. 1.

3.3. Classification performance and comparison

This section presents the classification performance of each
module of the G-SHDL network. The accuracy of the hand-
crafted module (HC) is computed on the concatenated rela-
tively symmetric features extracted at L0, L1, L2, for both
resolutions (R1, R2) using CRF for segmentation on MSRC
dataset. The hand-crafted module produced a classification

accuracy of 68.4% (HC) as shown in Table. 2. An increase
of approximate 4%, 2%, 2% and 2% is observed when the
mid-level features, learned at L3, L4, L5 and L6 are used by
the CRF. This suggests that the RBM layers learn useful im-
age representations as they improve the segmentation perfor-
mance finally producing an accuracy of 78.21%.

Table 2. PA (%) on SB dataset for each module computed with
CRF. The increase in accuracy with the addition of each layer is also
shown. HC: Hand-crafted. RBM Layers: L3, L4, L5 and L6.

Dataset HC L3 L4 L5 L6
Accuracy 68.4 72.3 74.8 76.7 78.21

Next, the performance of the SHDL network is evaluated
on the MSRC dataset. The network results in a segmenta-
tion accuracy of 83.90%, as shown in Table. 3. The G-SHDL
outperformed the semi-supervised and unsupervised learning
methods on both datasets; however the network underper-
formed against supervised deep learning models [21, 22], as
shown in Table 3. The segmentation results for two images
from the MSRC dataset are shown in Fig. 3.

Table 3. PA (%) and comparison on both datasets. Unsup: Unsu-
pervised, Semi: Semi-supervised and Sup: Supervised.

Dataset G-SHDL Semi Unsup Sup
SB [14] 78.21 77.76 [23] 68.1 [24] 80.2 [25]

MSRC [15] 83.90 83.6 [26] 74.7 [27] 89.0 [22]

3.4. Advantage over Deep Supervised Networks

Deep Supervised models need large labeled datasets for train-
ing which may not exist for most application. Table 4 shows
that our G-SHDL network outperformed the recurrent CNN
of [25] on the SB dataset with less than 300 images due to
poor ability of rCNNs to train on small training datasets. The
experiments were performed by dividing the training dataset
into 8 datasets of different sizes. It is made sure that an equal
number of images per object class were sampled from the
training dataset. The full test set was used for all experiment.

Table 4. Comparison of G-SHDL on PA (%) with Recurrent CNN
(rCNN) [25] against different training dataset sizes on SB dataset.

Arch. 50 100 200 300 400 500 572
G-SHDL 40.3 59.9 66.4 72.6 75.7 78.20 78.21

rCNN 15.6 34.5 41.1 66.9 76.2 79.87 80.2

4. CONCLUSION

The paper proposes a generative G-SHDL network for seman-
tic image segmentation that is faster to train and computation-
ally efficient. The network uses PCA based structural priors
that accerlate the training of (otherwise slow) RBMs. The net-
work has been shown to outperform unsupervised and semi-
supervised learning methods while evidence of the advantage
of G-SHDL network over supervised learning (rCNN) meth-
ods is presented for small training datasets.
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