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ABSTRACT

We propose a novel neural network-based adaptive image
denoiser, dubbased as Neural AIDE. Unlike other neural
network-based denoisers, which typically apply supervised
training to learn a mapping from a noisy patch to a clean
patch, we formulate to train a neural network to learn context-
based affine mappings that get applied to each noisy pixel.
Our formulation enables using SURE (Stein’s Unbiased Risk
Estimator)-like estimated losses of those mappings as em-
pirical risks to minimize. In results, we can combine both
supervised training of the network parameters from a sepa-
rate dataset and adaptive fine-tuning of them using the given
noisy image subject to denoising. Our algorithm with a plain
fully connected architecture is shown to attain a competitive
denoising performance on benchmark datasets compared to
the strong baselines. Furthermore, Neural AIDE can robustly
correct the mismatched noise level in the supervised learning
via fine-tuning, of which adaptivity is absent in other neural
network-based denoisers.

Index Terms— image denoising, neural networks, unbi-
ased estimate, adaptive

1. INTRODUCTION

Image denoising is one of the oldest problems in image pro-
cessing, and various denoising methods have been proposed
over the past several decades, e.g., wavelet shrinkage [1], non-
local means [2], BM3D [3], field of experts [4], sparse-coding
based methods [5, 6], WNNM [7], EPLL [8], CSF [9], MLP
[10], and DnCNN [11], etc.

Of particular interest among above are the methods based
on deep neural networks. Particularly, [11, 12] recently
have applied the convolutional neural network-based residual
learning to image denoising and impressively surpassed the
previous state-of-the-arts. However, there is one drawback on
those methods; they are solely based on offline batch training
of the neural network and lacks adaptivity to the given noisy
image. Such lack of adaptivity, which is typically possessed
in other methods, e.g., [1, 2, 6, 7], could be problematic

in practice when the characteristics of the given noisy im-
age, e.g., noise level, is different from those included in the
training set. While [11, 12] train blind denoising models by
training with multiple noise levels, such models could again
fail to perform well when the test noise level is outside the
range used for the supervised training.

To that end, we propose a novel framework for devis-
ing a neural network-based Adaptive Image DEnoiser (Neu-
ral AIDE). That is, we first formulate to learn an adaptive,
context-based affine denoising mapping for each pixel with a
neural network. Then, by utilizing the SURE (Stein’s Unbi-
ased Risk Estimator [13])-like estimated losses of such affine
mappings as empirical risks to minimize, we adaptively train
the network parameters solely based on the noisy image. Such
framework is compatible with supervised training of the pa-
rameters on a separate dataset, in which the adaptive train-
ing step becomes fine-tuning (with the given noisy image) the
pre-trained parameters. Our approach is inspired by the recent
work in discrete denoising [14]. The experimental results are
promising that Neural AIDE with simple fully connected ar-
chitecture becomes competitive with the strong baselines and
enjoys adaptivity that gives an edge to other neural net-based
denoisers.

2. NOTATIONS AND PROBLEM SETTING

We denote xn×n as the clean grayscale image, and each pixel
xi ∈ [0, 255] is corrupted by an independent additive noise to
result in a noisy pixel Zi, i.e., Zi = xi +Ni, i = 1, . . . , n2,
where the continuous noise variables Ni’s are independent
(not necessarily identically distributed nor Gaussian) over i
and E(Ni) = 0,E(N2

i ) = σ2 for all i. We treat the clean
image xn×n as an individual image without any probabilistic
model and only treat Zn×n as random.

A denoiser is generally denoted as X̂n×n = {X̂i(Z
n×n)}n2

i=1

denoting that each reconstruction at location i is a func-
tion of the noisy image Zn×n. The standard loss func-
tion used to measure the denoising quality is the mean-
squared error (MSE) denoted as ΛX̂n×n(xn×n, Zn×n) =
1
n2

∑n2

i=1 Λ
(
xi, X̂i(Z

n×n)
)

where Λ(x, x̂) = (x− x̂)2 is the
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per-symbol squared-error. Conventionally, the MSE is com-
pared in the dB-scale using the Peak Signal-to-Noise-Ratio
(PSNR) defined as 10 log10(255

2/ΛX̂n×n(xn×n, Zn×n)).

2.1. Estimated loss function for the affine denoiser

In this paper, we consider the denoiser of the form X̂i(Z
n×n) =

a(Z\i) · Zi + b(Z\i) for each i, in which Z\i stands for the
entire noisy image except for Zi. Namely, the reconstruction
at location i is an affine function of Zi, but the slope and the
intercept parameters, i.e., a(Z\i) and b(Z\i), can be func-
tions of the surrounding pixels. Hence, different parameters
can be used for each location. Following lemma motivates
considering such form of denoisers.

Lemma 1 SupposeZ = x+N with E(N) = 0 and E(N2) =
σ2, and consider a mapping of form X̂(Z) = aZ + b. Then,

L(Z, (a, b);σ2) = (Z − (aZ + b))2 + 2aσ2 (1)

is an unbiased estimate of EΛ(x, X̂(Z)) + σ2.

Remark: We note (1) is equivalent to the SURE [13] for X̂(Z)
although N may not be a Gaussian. While the true MSE,
Λ(x, X̂(Z)), can be evaluated only when the clean symbol x
is known, the estimated loss L(Z, (a, b);σ2) can be evaluated
soley with Z, the affine mapping (a, b) and the noisy variance
σ2, thus, plays a key role in adaptively learning the neural
network-based denoiser. The proof of lemma is omitted due
to the page limit.

From Lemma 1, we can also show that for X̂i(Z
n×n) =

a(Z\i) ·Zi + b(Z\i), given Z\i, L(Zi, (a(Z
\i), b(Z\i));σ2)

is an unbiased estimate of EZi

(
Λ(xi, X̂i(Z

n×n))
∣∣Z\i)+ σ2

since the noise is independent over i.

3. NEURAL AIDE

Our proposed Neural AIDE is defined to be

X̂i(Z
n×n) = a(C

\i
k×k) · Zi + b(C

\i
k×k), (2)

in which C
\i
k×k stands for the noisy image patch, or the con-

text, of size k × k surrounding Zi that does not include Zi.
Thus, the patch has a hole in the center. Then, as depicted in
Figure 1, we define a neural network

g(w, ·) : [0, 1]k
2−1 → R2 (3)

that takes the context C
\i
k×k as input and outputs the slope

and intercept parameters a(C\ik×k) and b(C\ik×k) for each lo-
cation i. Thus, although having an affine function form, (2)
is a highly nonlinear function in Zn×n. We denote w as the
parameters of the network and use the plain fully connected
neural network with ReLU activations.

There are two sharp differences between our Neural AIDE
and other neural network-based denoisers, e.g., [10, 11, 12,
15]. First, the other schemes take the full noisy image patch
(including the center) as input to the network, and the net-
work is trained to directly infer the corresponding clean
image patch. In contrast, Neural AIDE is trained to first
learn an affine mapping based on C

\i
k×k, then the learned

mapping is applied to Zi to obtain the recostruction X̂i.

Fig. 1. The architecture
of Neural AIDE

Such difference enables deriv-
ing the SURE-like estimated
loss in Lemma 1 and the adap-
tive training of the network as
described in the next section.
The principle of first learning
a mapping then applying it to
the noisy symbol for denois-
ing or filtering has also been
utilized in [16, 17, 14]. Sec-
ond, unlike other schemes, in
which the patch-level recon-
structions should somehow be
aggregated to generate the final
denoised image, Neural AIDE
simply generates the final pixel-
by-pixel reconstructions. Thus,
there is no need for a step to aggregate multiple number of
reconstructed patches, which simplifies the denoising step.

3.1. Adaptive training with noisy image

We first describe how the network parameters w can be adap-
tively learned from the given noisy image Zn×n without any
additional training data. That is, by denoting each output el-
ement of the neural network g(w, ·) for the context C

\i
k×k as

g(w,C
\i
k×k)1 , a(C

\i
k×k) and g(w,C

\i
k×k)2 , b(C

\i
k×k),we

can define an objective function, Ladaptive(w, Z
n×n), for the

neural network to minimize as

1

n2

n2∑
i=1

L
(
Zi, (g(w,C

\i
k×k)1,g(w,C

\i
k×k)2);σ

2
)
, (4)

by using the definition of L(Z, (a, b);σ2) in (1). The training
process using (4) is identical to the ordinary neural network
learning, i.e., start with randomly initiallized w, then use
backpropagation and variants of mini-batch SGD, e.g., [18],
for updating the parameters. The formulation (4) may seem
similar to training a neural network for a regression prob-
lem; namely, {(C\ik×k, Zi)}n

2

i=1 can be analogously thought
of as the input-target label pairs for the supervised regression.
However, note that (4) only depends on Zn×n and w (and
σ2), thus makes the learning adaptive.

The rationale behind using L(Z, (a, b);σ2) in (4) is sim-
ilar to other SURE-based estimators; minimize the unbi-
ased estimate such that the true MSE may be also mini-
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mized. However, unlike typical SURE-based estimators, e.g.,
[1, 19, 20], that choose a few tunable hyperparameters via
minimizing the unbiased estimate, we use L(Z, (a, b);σ2) as
an empirical risk in the empirical risk minimization (ERM)
framework to learn the entire parametric model (i.e., the neu-
ral network). Our approach is inspired by a recent work in
discrete denoising [14] that works with the unbiased esti-
mated losses for sliding-window denoisers.

Once the training is done, we can then denoise the same
noisy image Zn×n used for training by applying the affine
mapping at each location as follows; denoting w∗ as the
learned parameter by minimizing (4), the reconstruction at
location i by Neural AIDE is

X̂i,N-AIDE(Z
n×n) = g(w∗,C

\i
k×k)1 · Zi + g(w∗,C

\i
k×k)2. (5)

3.2. Supervised training and adaptive fine-tuning

While the formulation in (4) gives an effective way of adap-
tively training a denoiser based on the given noisy image
Zn×n, the specific form of the denoiser in (2) makes it
possible to carry out the supervised pre-training of w be-
fore the adaptive training. That is, we can collect abundant
clean images, x̃n×n, from various image sources (e.g., World
Wide Web) and corrupt them with the assumed additive noise
with known variance σ2 to generate the correspoding noisy
images, Z̃n×n, and the labelled training data of size N ,
D = {(x̃i, C̃i,k×k)}Ni=1. Note C̃i,k×k stands for the noisy
image patch of size k× k at location i that includes the noisy
symbol Z̃i, and x̃i is the clean symbol corresponding to Z̃i.

Now, the subtle point is that, unlike the usual supervised
learning that may directly learn a mapping from C̃i,k×k to x̃i,
we remain in using the neural network defined in (3) and learn
w by minimizing Lsupervised(w,D) that equals to

1

N

N∑
i=1

Λ
(
x̃i,g(w, C̃

\i
k×k)1 · Z̃i + g(w, C̃

\i
k×k)2

)
. (6)

Once the objective function (6) converges after sufficient it-
eration of weight updates, we denote the converged parame-
ter as w̃. Then, for a given noisy image to denoise, Zn×n,
we can further update w̃ adaptively for Zn×n by minimizing
Ladaptive(w, Z

n×n) in (4) starting from w̃. That is, we adap-
tively fine-tune w̃ until Ladaptive(w, Z

n×n) converges, then
denoise Zn×n with the converged parameter as (5). This ca-
pability of adaptively fine-tuning the supervised trained w̃ is
the unique characteristic of Neural AIDE that differentiates it
from other neural network-based denoisers.

4. EXPERIMENTAL RESULTS

We compared the denoising performance of Neural AIDE
with several state-of-the-arts, such as BM3D [3], MLP [10],
EPLL [8], WNNM [7], and DnCNN [11]. We could not
compare with [12] since no source code was available.

4.1. Data and experimental setup

For the supervised training, we generated the labelled train-
ing set using 2000 publicly available images, out of which
300 were taken from train/validation sets in the Berkeley
Segmentation Dataset (BSD) [21] and the remaining 1700
were taken from Pascal VOC 2012 Dataset [22]. For the
Pascal VOC images, we resized them to match the resolution
of the BSD, 481 × 321. We corrupted the images with ad-
ditive Gaussian noise and tested with multiple noise levels,
σ = 5, 10, 15, 20, 25, 50, 75, 100. Namely, we built a separate
training set with 2000 images for each noise level. The total
number of training data points (i.e., N ) in each dataset was
about 308 million. We evaluated the denoising performance
with standard 11 images, {Barbara, Boat, C.man,
Couple, F.print, Hill, House, Lena, Man,
Montage, Peppers}, and 68 Berkeley images [4].

Our network had 9 fully connected layers with 512 nodes
in each layer and used Adam [18] as the optimizer for train-
ing. The number of epochs, learning rates, the context size k,
and the regularization parameters were determined via cross-
validation. All our experiments used Keras 1 with Tensorflow
[23] backend and NVIDIA GeForce GTX1080 with CUDA
8.0.

4.2. Quantitative evaluation

We first carried out the adaptive training for various k values
solely with the given noisy image as described in Section 3.1.
The best average PSNR on the 11 standard images was 28.62
(dB) for σ = 25 with k = 7. While the result is decent,
we note some PSNR gap exists compared to the state-of-the-
arts shown in Table 1. Then, we carried out the supervised
training only with 2000 images described above. We observed
the supervised training alone can achieve much higher PSNR,
30.32 (dB) for σ = 25 with k = 17, for the 11 images than
the adaptive training, and become close to the state-of-the-
arts. Finally, we fixed k = 17 and combined the adaptive
fine-tuning with the supervised model as described in Section
3.2, of which results are summarized below.

Table 1 summarizes PSNRs of Neural AIDE compared
to the recent state-of-the-arts on the standard 11 test images
for various noise levels. For the baseline methods, we down-
loaded the codes from the authors’ webpages and ran the code
on the noisy images so that the numbers can be compared
fairly. (MLP and DnCNN-S could run only on selected noise
levels, which is the reason for the missing values in tables.)
DnCNN-S and DnCNN-B of [11] stand for the model trained
on separated training dataset with the correct σ and the blindly
trained denoiser, respectively. N-AIDES is the Neural AIDE
with supervised training only, and N-AIDES+FT is supervised
training combined with the adaptive fine-tuning. The best per-
formance for each noise level is denoted with bold.

1http://keras.io

2983



Table 1. PSNR(dB) on the 11 standard benchmark images.
σ BM3D MLP EPLL WNNM DnCNN-B Dn-CNN-S N-AIDES N-AIDES+FT
5 38.23 - 37.90 38.45 37.80 - 38.21 38.47

10 34.69 34.45 34.26 34.95 34.66 34.88 34.71 34.92
15 32.74 - 32.27 32.99 32.86 33.02 32.79 32.98
20 31.40 - 30.90 31.63 31.60 31.67 31.43 31.63
25 30.33 30.25 29.79 30.57 30.55 30.62 30.32 30.53
50 27.08 - 26.52 27.39 27.43 27.39 26.98 27.23
75 25.21 - 24.62 25.51 18.62 25.38 25.00 25.27

100 23.96 - 23.42 24.27 14.04 - 23.73 23.95

From the table, we see N-AIDES+FT is competitive with
the state-of-the-arts, WNNM and DnCNN, and mostly out-
performs BM3D, MLP, and EPLL. Particularly, N-AIDES+FT
is much better than MLP, another plain fully connected neu-
ral network-based denoiser. Also, by comparing N-AIDES
with N-AIDES+FT, we can clearly see the effectiveness of the
adaptive fine-tuning.

Furthermore, as mentioned in the Introduction, one of the
main drawbacks of the other neural network-based denoisers,
e.g., MLP [10] and DnCNN-S [11], is that the networks have
to be trained separately for all noise levels, and the mismatch
of σ can significantly hurt the denoising performance. While
N-AIDES is also trained in a similar way, Figure 2 show that
the adaptive fine-tuning can be very effective in overcoming
such limitation. Figure 2(a) shows the PSNR of the mis-
matched N-AIDES models before fine-tuning. “Model σ”
stands for the σ used for the supervised training, and “Test
σ” stands the σ of the true noise in the noisy image. Each
row is normalized with the PSNR of the matched case, i.e.,
the diagonal element, and is color-coded. We clearly see the
sensitivity of PSNR in the mismatch of σ as the off-diagonal
values show significant gaps compared to the diagonal ones in
each row. On the other hand, Figure 2(b) shows the PSNR of
N-AIDES+FT’s that have mismatched N-AIDES models, but
are adaptively fine-tuned with the correct Test σ’s. We ob-
serve that the PSNR gaps of the mismatched N-AIDES mod-
els can be significantly closed by the adaptive fine-tuning as
long as the true Test σ is known at the fine-tuning stage.

(a) PSNR of N-AIDES (b) PSNR of N-AIDES+FT

Fig. 2. PSNR(dB) of mismatched models

To overcome the σ mismatch problem of the supervised
models, DnCNN-B [11] trains a single, blindly trained su-
pervised model with a data that has mixture of broad range
of σ values between [0, 55]. Table 1 shows that such model
has strong performance when the Test σ is included in the
[0, 55] range. However, we can see that for the Test σ of 75
(18.62dB) and 100 (14.04dB), the performance of DnCNN-B
dramatically deteriorates.

Table 2. PSNR(dB) on the 11 images for Test σ = 75.
Model σ for N-AIDES 5 10 15 20 25 50

Fine-tuning σ = 75 22.47 21.99 22.04 22.65 22.12 24.77
Fine-tuning σ = 100 22.27 21.05 21.64 22.04 21.56 24.61

Table 2, results for Test σ = 75, shows that N-AIDES+FT
can effectively correct the mismatch of the N-AIDES mod-
els even when the σ for the fine-tuning is also mismatched,
i.e., doubly mismatched. Row 1 of the table is identical to
the first 6 values of the second row of the matrix in Figure
2(b), i.e., mismatched Model σ, but a matched “Fine-tuning”
σ. Row 2 is when Fine-tuning σ is also mismatched. We ob-
serve that while the second row results are slightly worse than
those of the first row, the doubly mismatched N-AIDES+FT’s
still achieve much higher PSNRs than that of DnCNN-B (i.e.,
18.62dB). Particularly, when the Model σ is 50 and the Fine-
tuning σ is 100, the PSNR of N-AIDES+FT (24.61 dB) is
just 2.6% worse than the matched case (25.27dB in Table 1),
whereas the mismatched DnCNN-B is 26.3% worse. Note
there is no way to fix DnCNN-B in this case other than re-
training the whole network from scratch with a new super-
vised set including σ = 75, since the model is not adaptive.
Clearly, such re-training is expensive in practice.

Table 3. PSNR(dB) on the 68 standard Berkeley images.
σ BM3D MLP EPLL WNNM DnCNN-B Dn-CNN-S N-AIDES N-AIDES+FT
5 37.58 - 37.55 37.76 37.65 - 37.81 37.88

10 33.31 33.49 33.37 33.55 33.71 33.86 33.66 33.75
15 31.07 - 31.19 31.32 31.60 31.72 31.47 31.57
20 29.61 - 29.73 29.83 30.19 30.25 30.02 30.13
25 28.56 28.95 28.67 28.81 29.15 29.22 28.95 29.06
50 25.60 - 25.66 25.89 26.20 26.21 25.90 26.03
75 24.19 - 24.09 24.36 18.68 24.62 24.31 24.46

100 23.23 - 23.05 23.38 14.29 - 23.24 23.41

Table 3 shows the PSNR results on the 68 standard Berke-
ley images [4]. We now see N-AIDES+FT outperforms all
baselines other than DnCNN. While DnCNN-S has slightly
superior performance than ours (about 0.15dB), we believe
N-AIDES+FT has much more room to improve since we have
not extensively tested with more modern network architec-
tures, such as CNN with skipped connections [12], residual
learning [24], and batch normalization [25], as in [11, 12]

5. CONCLUDING REMARKS

We devised a novel neural network-based adaptive image
denoiser, Neural AIDE, based on SURE-like estimated loss
minimization. For future work, we plan to explore more mod-
ern network architectures, try nonlinear mappings other than
the affine mappings, and work with different types of noise.
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