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ABSTRACT

In this article, we develop a distributed algorithm for learning a
large neural network that is deep and wide. We consider a sce-
nario where the training dataset is not available in a single processing
node, but distributed among several nodes. We show that a recently
proposed large neural network architecture called progressive learn-
ing network (PLN) can be trained in a distributed setup with central-
ized equivalence. That means we would get the same result if the
data be available in a single node. Using a distributed convex opti-
mization method called alternating-direction-method-of-multipliers
(ADMM), we perform training of PLN in the distributed setup.

Index Terms— Distributed learning, neural networks, data par-
allelism, convex optimization.

1. INTRODUCTION

Artificial neural networks have seen a great revival in recent years.
Many efforts have been carried out to improve the performance capa-
bilities of the primary neural network structures, for example, recur-
rent neural networks [1], residual networks [2], deep networks [3],
extreme learning machines [4, 5], etc. These example neural net-
works are shown to provide high quality performances for many
applications, for example in speech recognition, object recognition,
image representation, biological analysis, and more [6–12]. In this
article, we consider a scenario where training data is not available
in a single node (here a node can be a processor / memory), but dis-
tributed over several nodes. This is the distributed scenario we are
dealing with which can be motivated for two main reasons: (a) the
training data is very large and can not be accommodated in a single
node, (b) training data can not be placed in a single node or shared
between the nodes due to privacy issues. This distributed scenario
relates to the term ‘data parallelism’ in the neural network commu-
nity [13]. For this scenario, our main objective in this article is to
design a distributed training algorithm. The distributed algorithm
ensures training of a large neural network that has the same structure
and parameters as if it were trained in a centralized manner. Here
the term ‘centralized manner’ corresponds to the case where all the
training data could be accessed in a single node.

Relevant existing work on distributed learning of neural net-
works includes [14–17]. All these prior works use model parallelism
or data parallelism. In model parallelism, nodes are responsible for
learning different parts of a single network, for example, each layer
in the neural network may be handled in each node. On the other
hand, in data parallelism, the data is distributed over nodes, as in the
case we are interested in, and all nodes try to arrive at the same model
where learned models over nodes are somehow combined. An im-
portant aspect is that none of the mentioned works in data parallelism

can provide a distributed training algorithm that ensures equivalence
to a centralized solution.

The main bottleneck is to implement an efficient distributed so-
lution of the centralized training algorithm. The most prominent
approach to learn a neural network is back propagation using gra-
dient search. It is non-trivial to design a distributed back propaga-
tion algorithm that provides a centralized solution. We find a re-
cent endeavor where a distributed extreme learning machine [18] is
developed which can arrive at the same solution as that of the cen-
tralized approach. This was possible as extreme learning machine
only learns parameters using least-squares, and least-squares can be
efficiently solved using a distributed optimization algorithm called
alternating-direction-method-of-multipliers (ADMM) [19]. At this
point, we mention that an extreme learning machine is typically a
shallow network comprised of a few wide layers. In [20], a progres-
sive learning network (PLN) was developed where parameters of the
layers are learned using constrained least-squares. PLNs are large in
the sense that they can have many hidden neurons and many layers.
Therefore, to design a large neural network in the distributed sce-
nario, we train the PLN in a distributed manner where all constrained
least-squares optimization problems are solved using ADMM. The
use of ADMM in distributed training results in the same solution as
the centralized scenario.

1.1. Distributed setup with centralized equivalence

In a supervised learning problem, let d = (x, t) be a pair-wise form
of input data vector x that we observe and target vector t that we
wish to infer. We assume x ∈ RP and t ∈ RQ. A neural network is
an inference function that provides an output t̃ = f(x,θ), where θ

contains the parameters of the neural network. Let us use (x(j), t(j))
to denote the j’th data-and-target pair and assume that we have J
such training samples as a training dataset D = {(x(j), t(j))}Jj=1.
Note that the cardinality of D is J . Let us use a cost function

C(θ) =
∑

(x(j),t(j))∈D

‖t(j) − f(x(j),θ)‖22. (1)

For a centralized scenario, we have all the J samples in a single
node. In the training phase, we learn optimal parameters by mini-
mizing the cost in a regularized manner, as follows

θ?c = argmin
θ

C(θ) s.t. ‖θ‖22 ≤ ε, (2)

where ‘s.t.’ is the abbreviation of ‘such that’. The above problem is
non-convex for a general neural network and hence, non-trivial.

In a distributed scenario, we have M processing nodes and we
assume that the training datasetD is divided intoM datasets. We de-
note the training dataset at them’th node byDm such that∪mDm =
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D. Let us denote the cost at the m’th node by

C(θm) =
∑

(x(j),t(j))∈Dm

‖t(j) − f(x(j),θm)‖22 (3)

where θm denotes the parameters learned at the m’th node. Our
interest is to learn the parameters in a distributed manner as follows

θ?d=argmin
θ,θm

∑
m

C(θm) s.t. ∀m, θm=θ, ‖θ‖22 ≤ ε. (4)

The constraint ∀m,θm=θ enforces the same solution for all nodes.
For the PLN, we can achieve θ?c = θ?d using ADMM under some
technical conditions. This is the centralized equivalence. In the next
section, we briefly describe the PLN.

2. PROGRESSIVE LEARNING NETWORK

A standard architecture for artificial neural networks (ANNs) is com-
prised of several layers where signal transformation flows from the
input side to the output side, that is, in one direction. This is known
as a feed-forward neural network. Each layer of an ANN is com-
prised of a linear transform (LT) of an input vector, followed by a
non-linear transform (NLT) to generate an output vector. The output
vector of a layer is then used as an input vector to the next layer. The
linear transform is represented by a weight matrix, whereas the non-
linear transform of the input vector is typically realized by a scalar-
wise non-linear transform, known as activation function. A popular
activation function is the rectifier linear unit (ReLU) that was used
to develop the PLN. Based on progression property of ReLU (ex-
plained in [20]), PLN uses a layer-wise design principle. A new
layer is added to an existing optimized network, and each new layer
is then learned and optimized at a time. For learning of each layer,
we have a convex optimization problem to solve. This is the main
reason that we can use a distributed convex optimization algorithm
ADMM to develop a distributed PLN.

The PLN architecture is shown in Figure 1, where each layer is
comprised of a linear input transform and a non-linear transform. For
simplicity, we assume that the number of hidden neurons in all layers
are the same. We denote the number of hidden neurons in each and
every layer by n. We use Wl to denote the linear transform related
to the l’th layer. If the PLN has L layers, then W1 is n×P size, and
all the other weight matrices Wl|L−1

l=2 are of n× n size. The weight
matrices have the following structure

Wl =


[

VQW?
ls

R1

]
if l = 1[

VQO?
l−1

Rl

]
for l = 2, 3, . . . , L,

(5)

where W?
ls ∈ RQ×P denotes the optimum linear transform for a

target approximation linear system and O?
l ∈ RQ×n denotes the

optimum output matrix for l’th layer in the PLN; further VQ =
[IQ − IQ]

T is a known matrix of 2Q×Q size and Rl are instances
of random matrices. The matrix R1 is (n− 2Q)× P size and other
Rl matrices are (n− 2Q)× n size. Let us construct data and target
matrices as follows

X =
[
x(1) x(2) . . . x(J)

]
∈ RP×J ,

T =
[
t(1) t(2) . . . t(J)

]
∈ RQ×J .

(6)

The optimum linear transform W?
ls is found by solving a regularized

least-squares problem (a convex optimization problem), as follows

W?
ls = argmin

Wls

‖T−WlsX‖2F + λ‖Wls‖2F , (7)

where λ is a parameter to tune. Let us denote n ReLU functions
together by a vector non-linear function g. Then, in the first layer of
PLN, the signal after non-linear transformation is y1 = g(W1x).
Similarly, for the l’th layer of PLN, the signal after non-linear trans-
formation is yl = g(Wlyl−1). We use the notation y

(j)
l to denote

the signal yl for the j’th input data x(j). Let us construct the signal
matrix at the l’th layer

Yl =
[
y(1) y(2) . . . y(J)

]
∈ Rn×J . (8)

For the l’th layer, we find an optimal output matrix for target approx-
imation by using the following convex optimization problem

O?
l = argmin

Ol

‖T−OlYl‖2F s.t. ‖Ol‖2F ≤ α‖UQ‖2F , (9)

where α ≥ 1 is a parameter we choose and UQ = [IQ − IQ] ∈
RQ×2Q is a known matrix. In PLN, we construct layers one-by-
one and learn the parameter O?

l using the above convex optimiza-
tion formulation. A PLN with l layers is built on an optimized
PLN with (l − 1) layers. We start with a single-layer PLN, then
build a two-layer PLN, and then proceed further successively in a
layer-wise fashion to develop a multi-layer PLN. For the training
dataset, let us denote the optimum cost for the l’th layer of PLN by
C?l = ‖T−O?

lYl‖2F . Then, by construction of PLN and using the
progression property of the ReLU function, we can show that the
cost is non-increasing with growing number of layers; analytically
it means that PLN satisfies C?l ≤ C?l−1. In ReLU based PLN, the
parameters to learn are {Wl} matrices. In effect, the parameters to
learn are {W?

ls, {O?
l }}, and the parameters to tune are λ, α. The

Rl matrices are random matrix instances, and fixed once chosen.

3. DISTRIBUTED LEARNING OF PLN

In a distributed setup of M processing nodes, we assume that the
m’th node has Jm training samples. Let us write the data matrix X
and the target matrix T as below

X = [X1 X2 . . . Xm . . . XM ] ,
T = [T1 T2 . . . Tm . . . TM ] ,

(10)

where Xm ∈ RP×Jm is the input data matrix in the m’th node and
Tm ∈ RQ×Jm is the target data matrix accordingly. We assume that
Xm and Tm together form the dataset Dm. For learning the param-
eters of PLN in the distributed scenario, we first focus on learning
W?

ls as per (7). We recast the learning problem in the following
optimization problem

min
Wm,Z

∑M
m=1 ‖Tm −WmXm‖2F + λ‖Z‖2F

s.t. ∀m,Wm = Z.
(11)

where Z is an auxiliary variable. We solve the above optimization
problem using ADMM. We break (11) into the following three parts
that can be executed in each of the M nodes using relevant informa-
tion exchanged between nodes:

W?
m=argmin

W
‖Tm−WXm‖2F+λ‖Zm‖2F+ 1

ρ
‖W−Zm+Λm‖2F ,

Z?m = argmin
Z

λ‖Z‖2F + 1
ρ

∑M
m=1 ‖W

?
m − Z + Λm‖2F ,

Λm = Λm + W?
m − Z?m.
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Fig. 1. The architecture of a multi-layer PLN with L layers. ‘LT’ stands for linear transform and ‘NLT’ stands for non-linear transform.

Note that the minimization problems have closed form solutions, and
therefore, the ADMM iterations are :

Wk+1
m =

(
TmXT

m + 1
ρ
(Zkm −Λk

m)
)

· (XmXT
m + 1

ρ
I)−1,

Zk+1
m = 1

ρλ+M

∑M
n=1(W

k+1
n + Λk

n),

Λk+1
m = Λk

m + Wk+1
m − Zk+1

m ,

where k denotes the iteration number in ADMM. Note that all Wm

matrices need to be first updated and shared between all nodes (com-
municated to each other) in order to move to the second part of the
ADMM iteration which is updating Zm.

Next we focus on learning O?
l in (9). Let us use a notation

εo , α‖UQ‖2F . For the m’th node, we denote the signal matrix at
the l’th layer of the PLN as Yl,m. Note that Yl,m is generated by
feeding the input data matrix Xm to the corresponding PLN. The
column vectors of Yl,m are the output vectors at the l’th layer for
the input data vectors in Xm. We recast the learning problem (9) as
the following optimization problem:

min
Ol,m,Z

∑M
m=1 ‖Tm −Ol,mYl,m‖2F s.t. ‖Z‖2F ≤ εo,

∀m,Ol,m = Z.
(12)

Then, we break it into three parts:

O?
l,m = argmin

O
‖Tm−OYl,m‖2F+ 1

µ
‖O−Zm+Λm‖2F ,

Z?m = argmin
Z

∑M
m=1 ‖O

?
l,m−Z+Λm‖2F s.t. ‖Z‖2F ≤ εo,

Λm = Λm + O?
l,m − Z?m.

The ADMM iterations would be:
Ok+1
l,m =

(
TmYT

l,m + 1
µ
(Zkm −Λk

m)
)

· (Yl,mYT
l,m + 1

µ
I)−1,

Zk+1
m = Pεo( 1

M

∑M
n=1(O

k+1
l,n + Λk

n)),

Λk+1
m = Λk

m + Ok+1
l,m − Zk+1

m .

Here, Pεo performs projection onto the space of matrices with
‖.‖2F ≤ εo, that is:

Pεo(Z) =

{
Z · ( εo

‖Z‖F
) : ‖Z‖F > εo

Z : otherwise.
(13)

As we are learning PLN in a layer-by-layer fashion, the use of
ADMM enforces a full synchronization in learning. For learning the
O?
l matrix for each layer, we allow ADMM to iterate sufficiently

enough to converge and expect to provide the same parameters
across all nodes. Here, ‘sufficiently enough’ is a qualitative term,
and in practice, we use a maximum number of iterations for ADMM,
say kmax = 100. While ADMM theoretically should converge to
a single solution, in practice there might be some difference be-
tween the learned parameters across nodes due to the finite number
of iterations. In our experiments, we show that the practical use
of ADMM does not result in a tangible performance difference
between the centralized and distributed PLN. For the distributed
PLN, the parameters λ, µ, ρ, εo and Rl matrices are assumed to be
fixed a-priori. These parameters are shared among all nodes before
ADMM starts iterating. Then, we develop the PLN layer-by-layer
until the cost converges. We can stop learning of PLN when we find
that adding a new layer does not result in a significant reduction in
the objective cost. However, we use a fixed number of L layers for
simplicity, which is known as a-priori.

4. EXPERIMENTAL RESULTS

We test the performance of the distributed PLN for classification
tasks using simulations. The datasets that we use are briefly men-
tioned in Table 1. We use the Q-dimensional target vector t in a
classification task as a discrete variable with indexed representation
of 1-out-of-Q-classes. A target variable (vector) instance has only
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Table 1. Databases for multi-class classification

Database # of
train data

# of
test data

Input
dimension (P )

# of
classes (Q)

Vowel 528 462 10 11
Extended YaleB 1600 800 504 38

AR 1800 800 540 100
Satimage 4435 2000 36 6
Scene15 3000 1400 3000 15

Caltech101 6000 3000 3000 102
Letter 13333 6667 16 26
NORB 24300 24300 2048 5
MNIST 60000 10000 784 10

Table 2. Classification performance comparison between PLN and
distributed PLN where M = 5, L = 10, n = 2Q+ 100

Dataset Centralized PLN Distributed PLN
Test

Accuracy
Training
Time(s)

Test
Accuracy

Training
Time(s)

Vowel 57.3±2.64 0.1519 56.5±2.76 0.0534
Extended YaleB 96.6±0.76 0.9724 96.8±0.74 0.3335

AR 95.3±0.94 3.5289 95.6±0.35 1.2553
Satimage 88.1±0.50 0.9471 87.9±0.29 0.2011
Scene15 98.9±0.36 2.9818 98.9±0.28 2.0322

Caltech101 74.1±0.83 15.815 73.5±0.71 7.3875
Letter 87.6±0.68 5.0599 87.5±0.28 1.0479
NORB 83.1±0.37 7.4850 83.1±0.17 2.1555
MNIST 91.5±0.17 12.479 91.3±0.23 2.5991

one scalar component that is 1, and the other scalar components are
zero. Then, for the PLN, we fix the number of layers L = 10 and
the number of hidden neurons n = 2Q+ 100 for each layer. We fix
the number of processing nodes M = 5 and then, uniformly divided
the training dataset between the nodes. The classification perfor-
mance results are reported in Table 2. Our interest is to compare the
distributed PLN with the centralized PLN. Note that the distributed
PLN uses ADMM with finite number of iterations. We keep the
maximum number of iterations as 100. While we mentioned that
there exists a distributed ELM [18] that provides equivalence to a
centralized ELM, we do not discuss ELM in this article. PLN was
thoroughly compared with the ELM in [20] and shown to perform
better for most cases. In the reported results in Table 2, we also did
not endeavor to find the parameters of PLN such that it provides high
quality performance, as reported in [20]. We provide the parameters
for centralized and distributed PLN in Table 3.

For the (centralized) PLN, it was shown in [20] that addition
of layers leads to a non-increasing trend in the objective cost. The
objective cost is in (12) as

∑M
m=1 ‖Tm −O?

l,mYl,m‖2F for the l’th
layer of PLN. Therefore, it is interesting to see how the decreasing
trend of the objective cost gets affected by the number of processing
nodes for a fixed amount of training data. Keeping the total amount
of training data fixed, if we increase the number of nodes, then, each
node has access to a fewer number of training samples.

For the Scene15 database, we did experiments to investigate the
trend in the objective cost versus layer number for different process-
ing nodes M . The results are shown in Figure 2. It can be seen that
as we increase the number of nodes, the performance difference be-
tween the distributed PLN and centralized PLN are more pronounced
when the number of layers are small. All the curves for different M

Table 3. The corresponding parameters of Table 2

Dataset Centralized PLN Distributed PLN
λ µ α λ ρ µ α

Vowel 102 10−1 2 102 10−1 10−1 2
Extended YaleB 104 103 2 104 10−5 10−2 2

AR 105 103 2 105 10−4 101 2
Satimage 106 105 2 106 10−4 10−2 2
Scene15 10−3 104 2 10−3 102 100 2

Caltech101 100 10−2 2 100 10−1 10−1 2
Letter 10−5 106 2 10−5 10−6 10−1 2
NORB 102 10−3 2 102 10−3 10−3 2
MNIST 100 105 2 100 10−2 10−2 2
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Fig. 2. Objective Cost versus layer number, Scene15 database,
kmax = 100

reach to similar performance levels when the number of layers in-
creases. This result is interesting as it shows that increase in the
number of layers in a neural network may lead to a robust perfor-
mance in the distributed scenario. Thus, deep neural networks might
have a higher potential in a distributed scenario than a shallow neural
network.

Matlab codes of all the experiments described in this paper are
available at https://sites.google.com/site/saikatchatt/. The datasets
used for the experiments can be found at [21–24] .

5. CONCLUSIONS AND DISCUSSIONS

We conclude that a distributed algorithm can be developed for learn-
ing a large neural network with multiple layers. To this end, we used
ADMM algorithm for optimizing each layer of progressive learning
network (PLN) and showed that the learned network is equivalent
to that of the centralized scenario under some technical conditions.
In this work, we have assumed that all processing nodes have direct
access to each other in order to transmit required parameters to re-
alize the distributed algorithm. In other words, we have assumed a
complete graph to characterize the communication network topology
over nodes. A future direction is to consider learning a distributed
neural network over a non-complete graph, where a node only has
access to information from few neighboring nodes.
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