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ABSTRACT

In recent years, Doppler radar has emerged as an alter-
native sensing modality for human gait classification since it
measures not only the target speed, but also the local dynam-
ics of the moving body parts, thereby creating a unique spec-
tral signature. This paper presents a learning-based method
for classifying human motions from micro-Doppler signals.
Inspired by the applications of deep learning, the proposed
method extracts features from the time-frequency represen-
tation of the radar signal using a cascaded of convolutional
network layers. To design a optimal network architecture,
the Bayesian optimization with Gaussian process priors is
employed. Experimental results on real data are presented,
which show a significant improvement compared to three
existing approaches.

Index Terms— micro-Doppler radar, time-frequency rep-
resentation, convolutional neural network (CNN), Bayesian
optimization

1. INTRODUCTION

Recent years have witnessed a high demand of using modern
radar systems for surveillance, tracking, and imaging appli-
cations, in both civilian and military contexts. In contrast to
sensors, such as digital cameras and infra-red sensors, radars
can work in various lighting environments and from different
standoff distances. Moreover, radar systems are less intru-
sive because they do not capture the face or other identifi-
able visual properties. Apart from measuring the speed and
locating the object, Doppler radars can sense the frequency
modulations on the radar return, which are induced by the
micro-movements of the moving object, e.g., the rotation of
the wheel of a vehicle or the arm swing of a walking per-
son. These frequency modulations and the main Doppler fre-
quency create a micro-Doppler (µ-D) signature, which can be
used for motion classification.

Over the past two decades, several studies have been con-
ducted to analyze the µ-D signatures of different moving tar-
gets, such as vehicles [1], jet engines [2], ballistic targets

[3], and human gait [4]. In recent years, the research fo-
cus has been diverted to the development of classification
approaches for Doppler radars. For non-rigid moving ob-
jects, several techniques have been proposed, based on im-
age classification, where the radar signal is converted into a
time-frequency representation, from which features are then
extracted and classified. Kim and Ling defined six types of
features from the spectrogram for classifying human activ-
ities [5]. Bjorklund et al. exploited the periodicity of the
µ-D frequencies by converting the spectrogram into the ca-
dence velocity diagram (CVD) [6]. Other researchers em-
ployed one dimensional (1D) principal component analysis
(PCA) [7] and one dimensional (2D) PCA [8] to extract com-
pressed features from the spectrogram. In [9], Tivive et al.
employed a set of 2D log-Gabor filters for feature extraction
before applying 2D PCA for dimensionality reduction. Bi-
lik et al., on the other hand, developed an approach based on
frequency domain, which extracts three types of speech pro-
cessing features: real cepstrum, linear predictive coding, and
mel-frequency cepstrum coefficients (MFCC) [10]. In most
of existing methods, the feature extraction and target classifi-
cation are solved separately, which may result in sub-optimal
classification performance.

In this paper, a deep hierarchical network architecture,
known as convolutional neural network (CNN), is developed
for human gait classification. The first few convolutional lay-
ers of the network are designed to extract from elementary
to complex features, and the last few layers are connected to
operate as a classifier. All the processing layers are trained
using supervised learning. To design an optimal architecture,
the network configuration parameter and the training param-
eters, which are considered as hyperparameters, are obtained
using a Bayesian optimization technique.

2. TIME-FREQUENCY RESPRESENTATION

2.1. Time-frequency analysis

A complex target such as a human can be represented as a set
of point scatterers. For a point scatterer, the Doppler radar
measures the backscattered power as a function of range and
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velocity. Let λ be the wavelength of the transmitted signal and
v(t) be the radial velocity. The instantaneous time-varying
phase change associated with the point scatterer is given by

φ(t) =
4π

λ

∫ t

0

v(τ)dτ. (1)

The received Doppler radar signal can be modeled as

x(t) = a(t)ej(ωt+φ(t)), (2)

where a(t) is the reflectivity of the target, and ω is the car-
rier angular frequency. Equation (2) shows x(t) is a non-
stationary signal.

For depicting the µ-D signatures, the radar signal backscat-
tered from the walking person is converted into a joint time-
frequency (T-F) distribution using either Short-time Fourier
Transform (STFT) or S-method. Let w(τ) denote the time
window function. The STFT of the µ-D signal x(t) is given
by

Fx(t, ω) =

∫ ∞
−∞

x(t+ τ)w(τ)e−jωτdτ. (3)

To achieve better T-F resolution while minimizing the cross-
term interferences, the S-method can be used for T-F anal-
ysis. The T-F representation obtained from the S-method is
computed as

Sx(t, ω) =
1

2π

∫ ∞
−∞

P (θ)Fx(t, ω+
θ

2
)F ∗x (t, ω− θ

2
)dθ, (4)

where ∗ denotes the complex conjugate. Here, P (θ) is a finite
frequency window whose width controls the cross-term sup-
pression and auto-term resolution properties of the T-F distri-
bution.

2.2. Local patch extraction

When a person is walking, the arm and leg motions gener-
ate µ-D modulations around the torso frequency. Therefore,
instead of processing the entire time-frequency map, patches
centered along the torso frequency are extracted and used as
2D inputs to the classifier. The patch height is determined rel-
ative to the height of the main µ-D peak, whereas the patch
width is defined by a fixed length duration, which should be
big enough to cover the periodic µ-D features. Furthermore,
to reduce the variations of the main µ-D, which is induced by
the leg swing or arm swing, the T-F patch is fixed to a size of
lh × lw, by down-sampling or up-sampling

To enhance the weak µ-D signatures, Naka-Rushton equa-
tion is applied to the extracted local T-F patch. This technique
not only enhances the contrast of weak µ-D signatures but
also removes background noise. Let p be a pixel of the local
patch. The normalized value p̃ by Naka-Rushton equation is
given by

p̃ =
1

1 + (mp )r
, (5)

where m is the mean value of the patch, and r ∈ R+ is a con-
stant controlling the slope of the input-output transfer charac-
teristic.

(a) (b)

Fig. 1: A 2D local patch extracted from the time-frequency
representation of a person walking with no-arm swinging:
(a) before contrast enhancement,(b) after using Naka-Rushton
equation.

3. HUMAN MOTION CLASSIFICATION

3.1. Network architecture

Deep CNNs have been shown to produce state-of-the art re-
sults in areas such as speech recognition [11], visual object
detection [12], and image classification [13]. Most traditional
classification approaches consist of two stages, feature ex-
traction and classification, which are separately designed or
trained. By contrast, a CNN performs both feature extrac-
tion and classification within the same architecture, where
cascaded features of different complexity are extracted in the
early layers and classification is performed in the later layers.

This paper proposes a CNN architecture with three main
stages, where each stage has a stack ofNb blocks. Each block
is composed of three layers: a convolutional layer, a batch
normalization layer, and a rectified linear unit (ReLU) layer.
A block can be seen as a sole feature layer to extract features
automatically from the T-F patches. The three main stages are
followed by a fully-connected layer and an output layer with
softmax activation neurons. These neurons generate outputs
in the range [0, 1]. The softmax activation neuron with the
highest score is the predicted class of the input T-F patch. To
reduce the number of parameters and avoid overfitting, a max-
pooling layer of fixed size 2 × 2 with stride of 2 and no zero
padding is employed after each stage, see Fig. 2.

Let Zi be the i-th 2D input and Kj be the j-th filter kernel
of size σk × σk. The j-th output feature map Yj is the sum
of convolutions of the 2D inputs Zi with the filter kernel Kj ,
then added with a trainable bias, b. Mathematically, the output
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feature map can be computed as

Yj = b+
∑
i

Kj ⊗ Zi, (6)

where ⊗ is the 2D convolution operators.
Since the proposed network architecture has three stages,

the total number of convolutional layers is 3×Nb, where Nb
is the number of blocks in each stage. The number of kernels
used in each stage is kept the same and proportional to 16√

Nb
,

so as to keep the same number of trainable parameters in each
stage. To keep a fixed size for every output feature map, we
apply a zero padding of size (σk−1)/2 with stride of 1 to the
corresponding convolutional layer. In this paper, the kernel
sizes applied in the first, second, and third stages are defined
as 15× 15, 7× 7, and 3× 3, respectively.
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Fig. 2: The proposed deep CNN architecture for human mo-
tion classification.

3.2. Network training

The algorithm used for training the deep CNN architecture
is the stochastic gradient descent with momentum [14]. Let
the model parameters be denoted by θ. The training method
minimizes the cross entropy function L(θ) given by

L(θ) = −
N∑
i=1

3∑
j=1

tij ln yj(xi,θ), (7)

where tij is the indicator that the i-th sample belongs to the
j-th class, yj(xi,θ) is the output generated by the j-th output
neuron for the i-th input sample. To reduce overfitting, we add
a regularization term for the weights to L(θ). In this way, a
penalty is applied for model complexity or extreme parameter
values that can induce overfitting [15]. The regularized loss
function can be written as

L(θ) = −
N∑
i=1

3∑
j=1

tij ln yj(xi,θ) + ρΩ(θ), (8)

where ρ is the L2 regularization coefficient. The function
Ω(θ) denoting the sum-of-squares of the parameters is given
by: Ω(θ) = 1

2θ
Tθ.

To minimize the loss function, the model parameters are
updated as follows:

θm+1 = θm − α∇θL(θm) + µ(θm − θm−1), (9)

where α is a positive learning rate, and µ denotes the momen-
tum added to the updates by the contribution of the previous
gradient step to the current iteration. Here,∇θ is the gradient
vector.

3.3. Bayesian optimization

Bayesian optimization (BO) is a powerful algorithm strategy
to finding the extrema of unknown objective functions. It as-
sumes this function is sampled from a Gaussian process and
estimates it with a surrogate function [16]. In other words, BO
typically works if the closed-form expression of the objective
function is unknown, but we can obtain several observations
of this function. Here, the BO technique is used to determine
the optimal network architecture and training method parame-
ters (i.e. hyperparameters) by minimizing the validation error.

Let P be the CNN hyperparameter space, which com-
prises the following key parameters: the number of blocks
Nb, the learning rate α, the momentum µ, and the L2 regu-
larization coefficient ρ. With these terminology, the objective
function F can be modeled as

F : P(Nb, α, µ, ρ) ⊂ R4 → R. (10)

Finding the optimal configuration in the CNN hyperparameter
space can be defined as finding p∗ ∈ P such that

p∗ = arg min
p∈P

F . (11)

Given the observations of the objective function D1:n =
{p1:n,F(p1:n)}, BO constructs a probabilistic model for
F(p) and then exploit this model to determine the next loca-
tion in P to sample. There are two main steps in this algorithm
[17]: firstly, the Gaussian process is adopted to estimate the
posterior distribution reflexing the updated beliefs about F ;
secondly, an acquisition function U constructed from the pos-
terior model is used to select the best point to evaluate the
function F .

Algorithm 1. BO for hyperparameter selection.

1: for i = 1 to N do
2: Find p∗ = arg maxp U(p|D1:n).
3: Sample the objective function: f∗ = F(p∗).
4: Augmented the data: D1:n+1 = {D1:n, (p∗, f∗)}.
5: Update the Gaussian process.
6: end for

The quality of a Gaussian process can be significantly af-
fected by the covariance function, which decides the smooth-
ness properties of samples drawn from it. This paper uses the
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ARD Matern 5/2 covariance function for the Gaussian pro-
cess [18]. The chosen acquisition function is the Expected
Improvement as described in [19].

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental setup

A continuous wave Doppler radar, ST200, with a carrier fre-
quency of 24 GHz was used to acquire radar data. A database
of µ-D signals from 18 subjects (7 females and 11 males) was
generated to evaluate the CNN-based classification method
[9]. Each subject performed three key human motion types:
walking freely (two-arms swinging), parading while carry-
ing an object (one-arm swinging), and carrying a heavy ob-
ject (no-arm swinging). Each motion type was repeated three
times. As a result, the total number of recorded Doppler sig-
nals of length 10 seconds was 162. The T-F patches were
extracted along these signals with a fixed size of 128 × 134,
which is equivalent to a length duration of 2 seconds. To eval-
uate the performance of the proposed method, the 2D patches
were divided into 6 folds to ensure that the subjects used in
the training set were not used in the test set. In this paper, the
parameter r for Naka-Rushton equation was set to 1.

Table 1: The number of samples for experiments.

Folds 1 2 3 4 5 6
Training samples 16401 16434 16491 16527 16566 16461

Test samples 3240 3345 3273 3252 3171 3318

For tuning the hyperparameters during BO process, 500
samples picked randomly from the training set were used as
validation set. The value range of the optimizable hyperpa-
rameters were defined as follows Nb ∈ [1, 4], α ∈ [10−3, 5×
10−2], µ ∈ [0.8, 0.95], and ρ ∈ [10−10, 10−2].

4.2. Experimental results

The proposed model was evaluated across different runs of
6-fold cross-validation so that all the samples are used for
training and testing. The performance of our model can be
assessed by taking the average classification rates of all runs.
Table 2 presents the experimental results produced by BO.
Each run, on average, achieves a classification rate of 96.85%.
The optimal number of blocks Nb obtained from BO tech-
nique is 3, i.e., a total number of 32 layers.

For comparison, three existing feature-based methods
were also evaluated: CVD [6], log-Gabor filtering combined
with (2D)2-PCA [9], and MFCC [10]. In the log-Gabor-based
method, the number of log-Gabor filters was 32, i.e., 4 scales
and 9 orientations. In the MFCC-based method, 64 mel-
scale cepstrum coefficients were extracted using 40 triangular
bandpass filters. In the CVD-based method, the first three
harmonic frequencies and the velocity profiles were extracted

as features. Table 3 shows the comparison of classification
rates obtained by different feature extraction methods over
the 6 cross-validation folds. Among the tested methods, the
proposed CNN-based classification method achieves the best
performance. The feature visualizations shows that the net-
work produces a glance to the µ-D signatures in the early
stages (Fig. 3a, 3b), while the deeper details are explored in
the last convolutional layers (Fig. 3c).

Table 2: The optimal hyperparameters and the correspond-
ing classification rate across different runs. SE stands for the
standard error.

Runs Optimal hyperparameters CRs ± SE(%)
Nb α µ ρ

1 3 0.00100 0.94271 1.45×10−10 97.65±2.3
2 3 0.00107 0.94722 1.99×10−10 95.95±4.1
3 3 0.00567 0.86391 8.31×10−3 96.80±3.2
4 3 0.03086 0.82040 1.02×10−10 97.23±2.7
5 3 0.00101 0.92532 9.32×10−9 96.60±3.4

Average 96.85±1.3

Table 3: Comparison of the proposed method with other fea-
ture extraction methods for human motion classification.

Methods Proposed log-Gabor MFCC CVD

CRs ± SE(%) 96.85±1.3 91.3±6.9 72.7±7.2 62.3±5.1

Fig. 3: A visualization of some learned features from low
level to high level: (a) by the first stage, (b) by the second
stage, (c) by the third stage.

5. CONCLUSION

This paper presents a deep learning method for classifying
Doppler radar signals from human walking with different
arm-motions. The Doppler radar signal is converted into a
T-F representation, where local patches are extracted along
the main Doppler shift. A flexible deep CNN architecture is
designed to classify the local patches into three categories.
To obtain the optimal network architecture, a Bayesian learn-
ing technique is employed to find four key hyperparameters.
Experimental results show that the proposed method achieves
promising outcomes in comparison with other techniques.
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