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ABSTRACT

This paper presents a novel memory-augmented neural net-
work for single-channel source separation. We propose a re-
call neural network (RCNN) where a couple of external mem-
ories are realized for sequence-to-sequence learning based on
an encoder and a decoder. These memories are learned in
a two-pass sensing procedure where the mixed signal is en-
coded and then decoded (or recalled) as context vectors by
using a bidirectional long short-term memory (LSTM) and a
LSTM, respectively. These context vectors are integrated in a
gating layer. A set of attention weights are calculated to attend
the hidden state of decoder to implement a recurrent neural
network for source separation. A gated attention mechanism
is carried out to fulfill a specialized memory network. The
regression errors due to two passes of sensing procedure and
one pass of gated attention are jointly minimized to estimate
the weight parameters of different components in different
layers. The experiments on multi-speaker speech enhance-
ment show that the proposed RCNN consistently outperforms
LSTM and neural Turing machine in different settings.

Index Terms— long short-term memory, sequence-to-
sequence learning, recall neural network, source separation

1. INTRODUCTION

Monaural source separation aims to separate a single-channel
mixed signal into the corresponding source signals. Speech
enhancement is a special case of monaural source separation
which is realized to demix or enhance a noisy speech sig-
nal into its clean source speech. The demixing or enhance-
ment system is treated as a regression problem which can be
solved by deep learning based on recurrent neural network
(RNN) [1–6]. However, RNN suffers from the problem of
gradient explosion or vanishing in stochastic gradient descent
(SGD) optimization. Long short-term memory (LSTM) [7] or
gated recurrent unit [8] was proposed to mitigate this problem
based on the gating mechanism and memory cell. Although
LSTM is powerful for sequential data learning, a key limita-
tion is the capability of information storage due to an internal
memory caused by rapid transition of hidden states. In [9,10],
the memory augmented neural networks based on neural Tur-
ing machine (NTM) and memory network were proposed by
enhancing the storage based on external memories. Memo-

rization was substantially expanded to catch various nonsta-
tionary patterns in long sequential data. NTM realized an ad-
dressing mechanism to read and write external memory. Use-
ful information was dynamically retrieved while useless in-
formation was overwritten based on an attention mechanism.
More recently, NTM was extended and successfully devel-
oped for monaural source separation [11].

In general, source separation is seen as a sequence-to-
sequence learning problem [12, 13] for sequence mapping
between mixed signals and source signals. Sequence-to-
sequence learning has been extensively developed for ma-
chine translation [14], speech recognition [15] and image
caption [16]. This study presents a new memory augmented
neural network for source separation where the external mem-
ory is built based on a sequence-to-sequence neural network.
An encoder-decoder network with a pair of memories is ex-
ploited to run a two-pass sensing procedure. The first pass
encodes the mixed signal into a context vector using a bidi-
rectional LSTM (BLSTM) while the second pass recalls the
mixed signal again via a LSTM decoder. The context vec-
tors of encoder and decoder are combined to estimate a set
of weights to attend the decoder outputs for source separa-
tion by using the third LSTM. Three LSTMs are constructed
for encoder, decoder and separator. A recall neural network
(RCNN) is built for monaural source separation. Different
from NTM addressing over a limited size of memory, the
proposed RCNN adopts the gated attention method without
the constraint on memory size. RCNN directly stores all
historical information in hidden states of two LSTMs which
are attended at separation phase. A series of experiments are
conducted to show the merit of RCNN over LSTM and NTM
for single-channel speech separation.

2. BACKGROUND SURVEY

2.1. Single-channel source separation

In a single-channel source separation system, the mixed sig-
nal at time t is represented by a magnitude spectrum vector
xmix
t calculated by short-term Fourier transform. A sequence

of mixed signal {xmix
t }Tt=1 is separated into two sequences of

source signals {x̂1
t}Tt=1 and {x̂2

t}Tt=1. Such a mixing system
with a pair of sources is seen as an underdetermined prob-
lem which is challenging in many tasks including singing-
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voice separation [17] and speech enhancement which identify
the singing voice and the clean speech in presence of back-
ground music and distortion noise, respectively. Source sep-
aration can be solved by a supervised regression model based
on deep neural network (DNN). In [1, 18], DNN has been
elevated to RNN which learned the temporal dynamics to im-
prove the system performance for speech separation or speech
enhancement. In addition, RNN is extended to LSTM which
tackles the difficulty in gradient calculation as well as handle
the speech enhancement in presence of unseen speakers. A
meaningful reason is that LSTM can memorize the long-term
context and improve the masking functions at each time step.
Memorizing the history information is helpful to make sure
the quality of the estimated masks for reconstruction of clean
speech. However, the internal memory in LSTM, represented
by hidden state, is updated too rapid to store sufficient infor-
mation for source separation. In [11], the memory-augmented
neural network based on NTM was proposed to improve the
performance of LSTM for speech enhancement.

2.2. Neural Turing machine

NTM is a differentiable computer which was proposed to re-
lax the limitation of memorization in LSTM [9]. A memory
matrix Mt with N memory slots is additionally built and
continuously updated at each time t based on an addressing
mechanism. A controller network, implemented by using a
LSTM variant and driven by a hidden state ht, is developed to
carry out the addressing mechanism. This controller provides
a set of addressing parameters to decide where to read and
write at each time. The addressing parameters of memory
key, key strength, interpolation gate, shift weight, sharpening
factor, erase vector and add vector are used to fulfill four
steps of addressing procedure including content addressing,
interpolation, convolutional shift and sharpening. A set of at-
tention weights wt = {wr,t(i), ww,t(i)}Ni=1 are accordingly
estimated to obtain a read vector by rt =

∑N
i=1 wr,t(i)Mt(i)

and update the memory matrix from Mt−1 to Mt based
on an erase vector et and an add vector at via Mt(i) =
Mt−1(i)� [1− ww,t(i)et]+ww,t(i)at where� denotes the
element-wise product. Different from LSTM only updating
hidden state ht, the recurrent layer in NTM is run by contin-
uously updating Ht = {ht, rt,Mt}. The extended hidden
state parametersHt, consisting of state vector ht, read vector
rt and memory matrix Mt, are formed in NTM. Instead of us-
ing memory cell ct in standard LSTM, NTM adopts the read
vector rt to update four gates in this new LSTM variant. A
systematic procedure for reading and writing is implemented.

3. RECALL NEURAL NETWORK

Although the memorization capability in NTM is upgraded,
there are still two issues remained to affect its practicality
in real world. The first one is the high computation cost

Fig. 1: A recall neural network containing a bidirectional
LSTM on the left as an encoder, a LSTM on the right as an
decoder and a LSTM on the top as a separator.

due to the intensive calculation for read and write with ex-
ternal memory. The second one is the limited size of memory
which causes the fast expiration of useful information due to
the erase operation at each time. To deal with these issues,
we propose a new memory-augmented neural network where
the external memory is constructed according to a sequence-
to-sequence learning based on an encoder-decoder network.
There is no writing of memory matrix. The frequent interac-
tion with external memory is mitigated. More importantly, we
implement the recall neural network (RCNN) to effectively
preserve and utilize useful information for a period of time
without fast expiration due to a limited size of memory.

3.1. System architecture

Figure 1 depicts the overall architecture of a deep sequence-
to-sequence model for monaural source separation from
{xmix

t }Tt=1 to {x̂1
t}Tt=1 and {x̂2

t}Tt=1. The proposed RCNN,
consisting of three LSTMs, is established to conduct a two-
pass sensing procedure before running the separation task.
The first layer is a fully-connected (FC) layer which trans-
forms an input xmix

t into two hidden states {h(1)
t , s

(1)
t } at each

frame t. One is for encoder on the left and the other one is for
decoder on the right. The second hidden layer of the encoder
is run to obtain hidden units h

(2)
t by using a BLSTM [19, 20]

which is composed of a memory matrix for forward and
backward directions Me = {h(2)

f,t ,h
(2)
b,t } which is shown by

green plate. At the same time, the second hidden layer of
the decoder is formed by a LSTM layer which produces the
hidden units to form the memory matrix Md = {s(2)t } dis-
played by orange plate. The context vectors of encoder cet
and decoder cdt are then obtained and used to carry out the
gated attention mechanism to calculate the hidden unit in the
third hidden layer s

(3)
t which is built as a LSTM layer and run

for source separation. Basically, the mixed signal {xmix
t }Tt=1
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is perceived two times before going to separation task. The
second-time sensing, run by the decoder, is seen as as a recall
over the information learned in the first-time sensing, run by
the encoder. In case of speech separation, three LSTMs in
RCNN are learned to perform listening, listening and sep-
arating. This procedure is fitted to how human enhances a
noisy speech. Human usually asks to listen the noisy speech
again to make sure the result of the separated speech. We
therefore call this model as the recall neural network.

In the implementation, the fourth hidden layer is formed
by a FC layer with parameters w(4) to find hidden unit s

(4)
t

before stacking with the reconstruction layer to estimate the

masking function of each source yi
t =

|W(5)
i s

(4)
t |

|W(5)
1 s

(4)
t |+|W

(5)
2 s

(4)
t |

[2,11] where W
(5)
i denotes the weight parameters at the fifth

hidden layer corresponding to two sources i ∈ {1, 2}, and
yi
t is the estimated mask function corresponding to source
i. The output signals are then obtained by x̂i

t = yi
t � xmix

t .
We accordingly develop a new sequence-to-sequence model
where the attention mechanism allows the model to spot-
light on complementary features from input signal based on
a two-pass sensing procedure and use these latent features
for demixing. Such an attention using weights {αe

t,i, α
d
t,i} for

encoder and decoder is similar to a dropout operation in DNN
which picks up useful information and discards redundant in-
formation over two external memories {Me,Md}. Different
from traditional sequence-to-sequence models [12, 14–16],
RCNN performs the gated attention over the external mem-
ory. In addition to the decoder loss, the encoder loss is
considered as a regularizer to our model. The same mixed
signal is fed into RCNN twice via the encoder LSTM and
the decoder LSTM. Detailed descriptions of encoder-decoder
network and gated attention mechanism are addressed below.

3.2. Encoder-decoder network

An encoder-decoder network is introduced to carry out a
pair of external memories in RCNN in accordance with a
sequence-to-sequence learning. These memories provide the
external latent codes and context vectors to demix an ob-
served signal into two source signals. First, the encoder is
formed by a FC layer followed by a BLSTM layer. The hid-
den units in FC layer and in forward and backward directions
of BLSTM layer are expressed by h

(1)
t = FC(xmix

t ,w
(1)
e ) and

h
(2)
t = {h(2)

f,t ,h
(2)
b,t } = BLSTM(h

(1)
t ,h

(2)
t−1,h

(2)
t+1,w

(2)
e )

where w
(1)
e and w

(2)
e denote the parameters in FC and

BLSTM layers, respectively. The encoder memory Me =

{h(2)
f,t ,h

(2)
b,t } is obtained. Owing to the bidirectional sensing,

the whole mixed signal should be encoded before moving to
the next layer to combine with the information learned from
decoder. Then, the decoder is built by a FC layer followed by
a LSTM layer to obtain hidden codes s

(1)
t = FC(xmix

t ,w
(1)
d )

and s
(2)
t = LSTM(s

(1)
t , s

(2)
t−1,w

(2)
d ) using decoder param-

eters w
(1)
d and w

(2)
d , respectively. The decoder memory

Md = {s(2)t } is stored. Next, a gated attention method is
implemented to calculate the context vectors {cet , cdt } and
the gating weights {ge

t ,g
d
t } to carry out the attention-based

LSTM layer s
(3)
t = LSTM(s

(2)
t , s

(3)
t−1,g

e
t �cet ,g

d
t �cdt ,w

(3))

using the parameters w(3). We build one BLSTM for en-
coder, one LSTM for decoder and one LSTM for separator.
In LSTMs, we use the hidden states from previous time
{s(2)t−1, s

(3)
t−1} as inputs. In BLSTM, the hidden states in

two directions {h(2)
t−1,h

(2)
t+1} are used as inputs. The gating

weights {ge
t ,g

d
t } reflect how much information in context

vectors {cet , cdt } is attended or is ignored.

3.3. Gated attention mechanism

We present a gated attention mechanism which allows RCNN
to select useful information for source separation. Using this
mechanism, the context vectors of encoder and decoder at
each time t are calculated by linearly combining all entries
in external memories of encoder and decoder

cet =

Ne∑
i=1

αe
t,iMe(i), cdt =

Nd∑
i=1

αd
t,iMd(i). (1)

In Eq. (1), memories Me = {Me(i)} and Md = {Md(i)}
have Ne and Nd vectors, respectively, and αe

t,i and αd
t,i de-

notes the attention weights given by

αe
t,i =

exp(aet,i)∑T
j=1 exp(a

e
t,j)

, αd
t,i =

exp(adt,i)∑T
j=1 exp(a

d
t,j)

(2)

where aet,i = (ve)
> tanh

(
Weas

(3)
t−1+UeaMe(i)

)
and adt,i =

(vd)
> tanh

(
Wdas

(3)
t−1+UdaMd(i)

)
. Given context vectors

{cet , cdt } and previous hidden state s
(3)
t−1, the gating units are

computed by

ge
t = σ(Wegs

(3)
t−1+Uegc

e
t+beg), g

d
t = σ(Wdgs

(3)
t−1+Udgc

d
t+bdg)

(3)
where σ(·) denotes the sigmoid function. In this study, RCNN
parameters Θ = {w(1)

e ,w
(1)
d ,w

(2)
e ,w

(2)
d ,w(3),ve,vd,Wea,

Wda,Uea,Uda,Weg,Wdg,Ueg,Udg,beg,bdg,w
(4),W(5)}

are estimated by minimizing the sum-of-squares error func-
tion between clean spectra and the estimated spectra L(Θ) =
1
2

∑T
t=1

(
||x1

t − x̂1
t ||+ ||x2

t − x̂2
t ||+ ||x1

t − x̃1
t ||+ ||x2

t − x̃2
t ||
)
.

This loss function is not only calculated from separation out-
puts {x̂1

t (Θ), x̂2
t (Θ)} (Lsep(Θ)) but also from the encoder

outputs {x̃1
t (Θ), x̃2

t (Θ)} (Lenc(Θ)).

4. EXPERIMENTS

4.1. Experimental setup

Monaural source separation was evaluated using the task of
single-channel speech enhancement. Speech signals were
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sampled from 83 speakers in WSJ0 SI-84 and noise signals
were collected with 88 noise types from http://www.freesfx.co.
uk/soundeffects/ and http://www.audiomicro.com/free-sound-
effects/. 77 speakers were chosen as training speakers and the
remaining 6 speakers were treated as unseen test speakers.
The utterances from different speakers were randomly mixed
with various nonstationary noises. There were 7768 training
utterances which were mixed by using 86 noise types. To
evaluate the robustness of different methods, the noisy train-
ing data were generated by SNR of -5 dB while the noisy test
data were generated by SNR of -5 dB, 0 dB and 5 dB with two
unseen noise types (cafeteria and bus). There were 300 noisy
test utterances collected from unseen speakers and unseen
noisy types. In the implementation, 1024-point FFT was cal-
culated for mixed signals, i.e. xmix

t ∈ R513. DNN, LSTM and
NTM were carried out by referring [11]. NTMs with memory
size N=8, 32, 64 were examined. Using RCNN, the encoder
and decoder with topologies 513-1000 (FC)-800 (BLSTM)-
600 (FC)-{513-513} and 513-1000 (FC)-800 (LSTM)-700
(LSTM)-600 (FC)-{513-513} were implemented, respec-
tively. All models were trained by using SGD algorithm
with Xavier initialization and mini-batch size of 50 frames.
Step size of 20 frames was used in backpropagation through
time. Adam optimizer was used. Speech enhancement was
evaluated by using short-time objective intelligibility (STOI)
(higher is better).

(a) (b)

Fig. 2: An example of estimated attention weights (a) αe
t,i

and (b) αd
t,i over encoder Me and decoder memories Md,

respectively.

Model -5 dB 0 dB 5 dB Elaps.
Baseline 0.647 0.746 0.829 –

DNN 0.678 0.785 0.844 3.9
LSTM 0.718 0.815 0.872 12.9

NTM (N=8) 0.725 0.819 0.872 21.2
NTM (N=32) 0.731 0.825 0.877 25.3
NTM (N=64) 0.730 0.824 0.876 31.1

RCNN w/o cdt & Lenc 0.738 0.833 0.883 14.0
RCNN w/o Lenc 0.742 0.835 0.887 14.5
RCNN w/o cdt 0.747 0.838 0.886 14.8

RCNN 0.744 0.837 0.888 14.9

Table 1: Comparison of STOIs under different SNRs by us-
ing DNN, LSTM and different variants of NTM and RCNN.
Elapsed time per learning epoch (in minutes) is provided.

4.2. Experimental results

Figure 2 shows an example of attention weights {αe
t,i, α

d
t,i}

over encoder and decoder memories. It is meaningful that
RCNN likely attends the information in specific locations
over encoder memory Me but attends different locations over
decoder memory Md to learn for source separation. Ta-
ble 1 reports the STOIs of using DNN, LSTM, NTM and
RCNN under different SNRs of test samples. Baseline re-
sult corresponds to that without doing separation. STOI
is increased by applying DNN, LSTM, NTM and RCNN.
Different RNN variants using LSTM, NTM and RCNN out-
perform DNN. NTM consistently performs better than LSTM
under different SNRs and memory sizes N . Improvement is
larger in case of -5 dB but smaller in cases of 0 dB and 5
dB. External memory does work for RNN. Too large mem-
ory size (N=64) does not always help. Nevertheless, the
improvement of RCNN over NTM is obvious in different
SNRs. This is partially because RCNN is not constrained
by memory size. RCNN stores the information without eras-
ing and adding. To evaluate different functions in RCNN,
three simplified variants are realized for comparison. RCNN
without attending decoder memory Md corresponds to the
RCNN without using context vector cdt . RCNN without Lenc
expresses the RCNN without including loss function from
encoder. RCNN can be also reduced by disregarding both
cdt and Lenc. Attending the decoder memory and including
the encoder loss do improve the separation performance. In
particular, including encoder loss enables the RCNN to speed
up convergence while attending the decoder memory helps
little in terms of STOI. The information in context vector cdt
contains redundancy. RCNN without considering cdt and Lenc
consistently worse than the other RCNN variants. In addition,
the elapsed time per learning epoch is shown in minutes by
using multi-GPU GTX GeForce GTX 980 device. Attrac-
tively, RCNN runs much faster than NTM but insignificantly
slower than LSTM. Source codes of RCNN is accessible at
https://github.com/NCTUMLlab/Kai-Wei-Tsou-RecallNet.

5. CONCLUSIONS

We have addressed a novel sequence-to-sequence learning to
implement the external memories in a recall neural network
which imitated the human perceiving for source separation. A
recall function was realized by an encoder-decoder network
which extracted the complementary information from exter-
nal memories. A gated attention method was implemented to
attend the information of encoder and decoder for speech en-
hancement. A bidirectional LSTM for encoder, a LSTM for
decoder and a LSTM for separator were constructed to lis-
ten, listen and separate for source separation. Experiments
on speech enhancement showed the superiority of RCNN to
other methods under different conditions. RCNN ran signifi-
cantly faster than neural Turing machine.
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