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ABSTRACT

Low-resolution (LR) face identification is always a challenge
in computer vision. In this paper, we propose a new LR face
recognition and reconstruction method using deep canonical
correlation analysis (DCCA). Unlike linear CCA-based meth-
ods, our proposed method can learn flexible nonlinear rep-
resentations by passing LR and high-resolution (HR) image
principal component features through multiple stacked lay-
ers of nonlinear transformation. As the nonlinear transforma-
tion in deep neural networks is implicit, we apply radial basis
function based neural network to learn an explicit mapping
between principal components and correlational features. In
addition, we also design two residual compensation methods
for identification and vision enhancement, respectively. The
proposed approach is compared with existing LR face recog-
nition and reconstruction algorithms. A number of experi-
mental results on benchmark datasets have demonstrated the
effectiveness and robustness of our method.

Index Terms— Low resolution, face recognition, image
reconstruction, deep learning, canonical correlation

1. INTRODUCTION

In video surveillance, human face is essential information for
robust recognition and authentication. However, owing to en-
vironment influence and imaging equipment limitation, face
images often present very low resolution (LR), which makes
subsequent face recognition or authentication tasks challeng-
ing. A simple example is shown in Fig. 1, where a female
face image is blurry due to the long distance. To overcome
this issue, many face super-resolution (FSR) techniques have
been proposed in recent decades. FSR aims at inferring high-
resolution (HR) facial images or recognition features from

∗Corresponding author.
This work is supported by the National Natural Science Foundation of

China under Grant Nos. 61402203, 61703362, 61472344, 61611540347,
the Natural Science Foundation of Jiangsu Province of China under Grant
Nos. BK20161338, BK20170513, and Yangzhou Science Project Fund under
Grant No. YZ2017292. Moreover, it is also sponsored by Excellent Young
Backbone Teacher (Qing Lan) Project and Scientific Innovation Project Fund
of Yangzhou University under Grant No. 2017CXJ033.

Fig. 1. A typical low-resolution face image.

LR ones. Roughly, FSR methods can be divided into vision-
oriented and recognition-oriented methods.

Vision-oriented methods focus on obtaining good visual
effects by image reconstruction. Typical methods include
manifold-based [1, 2], dictionary-based [3, 4] and regression-
based methods [5, 6, 7, 8]. Differently, recognition-oriented
techniques aim at achieving high recognition accuracy on
LR face images. Li et al. [9] first reconstructed HR fea-
tures instead of HR images for face recognition. After that,
sparse-representation-based methods [10] and deep-learning-
based [11] methods are springing up with encouraging per-
formances.

Recently, Huang et al. [12] used canonical correlation
analysis (CCA) to learn the linear correlations between HR
and LR facial features, which achieves satisfactory recon-
struction quality. Nevertheless, CCA is a linear learning ap-
proach in essence, thus difficult to measure the nonlinear rela-
tionships between HR and LR facial images. To solve this is-
sue, Zhang et al. [13] proposed a kernel CCA (KCCA) based
LR face recognition method, where the nonlinear correlation
between HR and LR face features can be well depicted by two
kernel mappings. However, an obvious drawback of KCCA
is that the learned nonlinear representation is limited by the
fixed kernel. More importantly, projecting original features
into kernel spaces is opaque, which makes the mapping pro-
cess irreversible, therefore becoming difficult to reconstruct
HR face images from LR ones.

Deep neural network (DNN) has been widely used in
computer vision, which is a powerful tool for uncovering the
nonlinear information hidden in the data and thus obtains the
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great success. Motivated by advanced ideas from DNN and
CCA, we propose a new LR face recognition and reconstruc-
tion approach based on deep CCA (DCCA). The proposed
method can learn flexible nonlinear representations by pass-
ing HR and LR facial features via multiple stacked layers of
nonlinear transformation. Specifically, we first extract global
facial structure both in HR and LR training images, and then
employ DCCA to learn the nonlinear consistency between
HR and LR facial features. At last, given a LR test image,
we use the neighborhood-based reconstruction approach [1]
to generate HR facial feature from LR one in a coherent
subspace. For recognition purpose, residual compensation is
implemented in HR feature space and the nearest neighbor
classifier is used for identification. For reconstruction pur-
pose, we apply a radial basis function (RBF) based neural
network to build a regression model from correlational fea-
tures to principal component features. Many experimental
results show the effectiveness of our proposed method.

2. CCA

Given two centered sets X = [x1, x2, . . . , xm] ∈ Rp×m and
Y = [y1, y2, . . . , ym] ∈ Rq×m, CCA aims to seek n ≤
min(p, q) pairs of basis vectors Wx ∈ Rp×m and Wy ∈
Rq×m, making the correlation coefficient of canonical pro-
jections W>x X and W>y Y maximized. There are many ex-
pressions for the optimization objective, one of which is

max
Wx,Wy

tr
(
W>x XY

>Wy

)
s.t. W>x XX

>Wx = W>y Y Y
>Wy = I,

(1)

where tr(A) denotes the trace of matrix A, and I is the iden-
tity matrix. The optimization problem (1) can be solved by
the generalized eigenvalue problem.

3. PROPOSED APPROACH

Our approach employs a two-step framework: the first step
is to carry out facial features/images reconstruction. In the
second step, different residual compensation methods are
adopted according to the purposes of identification and vi-
sion.

3.1. FSR for vision enhancement

Assume the HR face set is Ih = [ih1 , i
h
2 , . . . , i

h
m] ∈ Rp×m and

the corresponding LR set is I l = [il1, i
l
2, . . . , i

l
m] ∈ Rq×m,

First, we center the LR and HR training images by Î l =
{I lj − µl}mj=1 and Îh = {Ihj − µh}mj=1, where µl and µh

denote the mean faces of the LR and HR images. Then, to im-
prove the computational efficiency and reduce the noise, we
use principal component analysis (PCA) to extract the global
facial features of LR and HR training sets by the following:

X l = PTl Î
l and Xh = PTh Î

h, (2)

where Pl and Ph are the PCA projection matrices.
Considering that X l and Xh come from the same faces

differing in resolution, it is natural that they have the intrin-
sic consistency. Therefore, we use DCCA to learn flexible
nonlinear representations to enhance consistency, as follows:(

θ∗f , θ
∗
g ,W

∗
f ,W

∗
g

)
= arg max
θf ,θg,Wf ,Wg

tr
(
W>f ΣfgWg

)
s.t. W>f ΣffWf = W>g ΣggWg = I,

(3)

where
Σff = F (X l; θf )F (X l; θf )

>
+ rfI,

Σgg = G(Xh; θg)G(Xh; θg)
>

+ rgI,

Σfg = F (X l; θf )G(Xh; θg)
>
,

F
(
X l; θf

)
and G

(
Xh; θg

)
are the centered outputs of two

DNNs, θf and θg are the vectors containing all parameters
of two DNNs, rf and rg are two small positive numbers.
We employ mini-batch gradient descent (MBGD) to solve
the model (3), as used in [14]. Once the optimal projec-
tion matrices and the parameters of DNNs are obtained, we
can get the correlational features Cl = W ∗>f F (X l; θ∗f ) and
Ch = W ∗>g G(Xh; θ∗g).

3.1.1. Facial reconstruction

If a new LR face image it is given, we first compute its princi-
pal component feature by xlt = P>l (it − µl), then transform
it to the coherent subspace by clt = W ∗>f F (xlt; θ

∗
f ).

Now, we reconstruct the corresponding HR correlational
features c̃ht using the idea of neighborhood reconstruction.
For clt, we find its nearest k neighbors {Cltj}

k

j=1
in Cl mea-

sured by Euclidean distance, and the weight coefficients A =
{αtj}kj=1 are obtained via minimizing the reconstruction er-
ror:

ε =

∥∥∥∥clt −∑k

j=1
αtjC

l
tj

∥∥∥∥ s.t.
∑k

j=1
αtj = 1, (4)

where ‖·‖ denotes the 2-norm of a vector. The corresponding
HR feature c̃ht can be reconstructed by applying weight A to
{Chtj}

k

j=1
in Ch:

c̃ht =
∑k

j=1
αtjC

h
tj . (5)

In order to reconstruct the HR image, we need to get the corre-
sponding principal component feature xht from cht . Consider-
ing the non-linear mapping implemented by DNN is implicit,
we reestablish the relationship between Ch and Xh using the
following mapping:

Xh = WRBFΦ. (6)

The (i, j)th element in the matrix Φ ∈ Rm×m is calculated by
(Φ)ij = exp(−||chi − chj ||/2σ2 ) with chi as the ith column in

2952



10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Neighbor Size

0.78

0.80

0.82

0.85

0.88

0.90

0.93

0.95
Re

co
gn

iti
on
 R
at
e

KCCA-NR
Huang's method
PCA-NR
SRDCCA
SRDCCA-RC

Fig. 2. Recognition rate vs neighborhood size.
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Fig. 3. Recognition rate vs down-sampling rate.

Ch and σ as the parameter of RBF. Accordingly, the weight-
ing coefficient matrix can be obtained by WRBF = XhΦ−1.
It is easily to calculate xht with WRBF . Then, the preliminary
reconstruction image can be expressed as:

ĩht = Phx
h
t + µh. (7)

3.1.2. Residual compensation

During face reconstruction, many details are inevitably lost in
space transformation and neighbor reconstruction processes.
To improve the final reconstruction outcome, we add the pro-
cessing of residual compensation.

First we use the method in section 3.1.1 to generate HR
face set Ĩh according to LR face training set I l. Then we get
HR and LR residual face sets:

Rh = Ih − Ĩh and Rl = I l − downsample(Ĩh). (8)

Same form as (4) and (5), the HR residual rht can be calcu-
lated by keeping the neighborhood relationship from Rl to
Rh, then the high-quality image we eventually produce is

iht = ĩht + rht . (9)

3.2. FSR for face recognition

In most surveillance scenarios, we prefer to identify people
rather than get better visual effect of human faces. It is regret-
table that great majority of current algorithms are to recon-
struct high-quality faces instead of enhancing the recognition
accuracy.

For recognition purpose, we propose a new approach in
this section. Let us start from (7) again. The feature of the
new inputted LR image has been calculated as c̃ht in the cor-
relation space, as well as reconstructed HR images ĩht . In
the section 3.1.2, the residual compensation method performs
well in the vision enhancement, but it also brings some noise,
which is unprofitable to recognition tasks. Therefore, in the
second step, we design a method to compensate the residuals
on recognition feature directly.

First we reconstruct feature set C̃h according to the LR
feature set Cl with method in section 3.1.1, and the corre-
sponding HR set Ĩh can be generated. Following the down
sampling, we get Ĩ l. Then we calculate correlational feature
of Ĩ l by

C̃l = W ∗>f F
(
P>l

(
Ĩ l − µl

)
; θ∗f

)
. (10)

Then the feature residual sets are expressed as

Eh = Ch − C̃h and El = Cl − C̃l. (11)

We down-sample the reconstructed test image and extract the
correlational feature clt. Then, we minimize

ε =

∥∥∥∥rlc −∑k

j=1
βtjE

l
tj

∥∥∥∥ s.t.
∑k

j=1
βtj = 1, (12)

where feature residual rlc = clt − c̃lt and {Eltj}
k
j=1 are near-

est k neighbors of rlc. We apply the obtained weight B =
{βtj}kj=1 on {Ehtj}

k
j=1 in Eh to reconfigure the correspond-

ing HR feature residual:

rhc =
∑k

j=1
βtjE

h
tj . (13)

Finally, we obtain the recognition feature

ch = c̃ht + rhc (14)

that can be fed to a classifier, such as the nearest neighbor
classifier.

4. EXPERIMENT

In this section, we test the effectiveness of the proposed
method in recognition and reconstruction two scenarios
separately. Explanatorily, we denote the proposed method
containing residual compensation as SRDCCA-RC, and the
method without residual compensation as SRDCCA.
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4.1. Recognition experiment

We carry out our SRDCCA and SRDCCA-RC methods on
the CMU PIE and Yale-B databases to test recognition per-
formance, and compare them with Bicubic-PCA, PCA-NR,
Huang’s method [12], and KCCA-NR [13]. Bicubic-PCA ap-
plies bicubic interpolation on LR face image, then extracts the
principal component feature for recognition. PCA-NR car-
ries out the neighborhood-based reconstruction to obtain the
corresponding HR principal component feature from the LR
one. The reconstructed feature is then used to recognize. In
addition, the nearest neighbor (NN) classifier is used in all the
experiments. In our method, we retain the 99% of spectral en-
ergy for HR and LR face images in the PCA transformation.
In all hidden layers of DNNs, We select the rectified linear
units as activation function defined as h(x) = max(x, 0).

4.1.1. Experiment on the CMU PIE database

We run two tests on the CMU PIE that is a face database rich
in light, posture and angle variety. We select all 24 frontal face
images for each person, and use all even numbered images
as the training set, and leave the rest as the test set. In our
method, the DNNs contain two hidden layers, each layer with
1000 cells. We set the learning rate as 0.088 and the max
epoch as 150 in MBGD.

Fig. 2. demonstrates the accuracy of various approaches
in the presence of different neighborhood sizes. In this task,
the size of HR and LR face images is set to 64 × 64 and
16 × 16, and the final recognition features are fixed in 30
dimensions.

Fig. 3. illustrates the effectiveness of our approach under
various down-sampling rates. In this task, we set the size of
HR images to 64 × 64, the neighborhood size and the recog-
nition feature dimension to 30, and let down-sampling rate
change from 2 to 6.

In the above two tests, our approaches (SRDCCA, SRD-
CCA-RC) outperform other methods, showing a satisfactory
robustness.

4.1.2. Experiment on the Yale-B database

The Yale-B database contains 5760 images of 10 subjects un-
der 576 viewing conditions. We use subset-1 of the database
to test the effectiveness of our approach for extremely low-
resolution image recognizing. In the seven images of each
person, the first four are used as training sets and the rest for
testing. The HR face image size is still set to 64 × 64. Dif-
ferently, LR images present very low resolution: 4 × 4. For
parameter settings, the DNNs still consist of two hidden lay-
ers, each layer with 800 cells. In MBGD, we set the learning
rate to 0.001 and the max epoch to 15. The experimental re-
sults are recorded in Fig. 4.

From the results, our approach shows a better recognition
effect at exceedingly low resolution, and therefore has higher
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Fig. 4. Recognition rate on very low-resolution images.
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Fig. 5. PSNR on the CAS-PEAL database.

application value.

4.2. Reconstruction experiment

We evaluate the effect of our method by reconstructing the
image on the CAS-PEAL database compared with Huang’s
method [12], ScSR [10] and SRCNN [5]. We use 1040 frontal
face images for reconstruction task, in which 1000 images are
used as the training set, and the rest as the test set. The size
of HR and LR face images is set to 100 × 100 and 25 × 25.
In our method, the structure of DNNs is the same as that in
section 4.1.1. In MBGD, we set the learning rate to 0.088 and
the max epoch to 150. The peak signal to noise ratio (PSNR)
result is illustrated in Fig. 5. PSNR is defined as:

PSNR = 10 log10

(
peakval2

MSE

)
, (15)

where peakval is the maximum possible pixel value of the im-
age. MSE is the mean square error between the reconstructed
image and the original image. The higher the PSNR value is,
the lower the picture distortion becomes.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a DCCA-based approach to ad-
dress the trouble of the LR face recognition and reconstruc-
tion. Many experimental results have shown that our pro-
posed method is promising both in recognition and recon-
struction. Considering the architecture of DNNs is designed
simply and parameters selection is based on experience, solv-
ing these problems is what we are going to do in the future.
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