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ABSTRACT 

 

Convolutional neural networks (CNNs) have shown great 

advantages in computer vision fields, and loss functions are 

of great significance to their gradient descent algorithms. 

Softmax loss, a combination of cross-entropy loss and 

Softmax function, is the most commonly used one for CNNs. 

Hence, it can continuously increase the discernibility of 

sample features in classification tasks. Intuitively, to promote 

the discrimination of CNNs, the learned features are desirable 

when the inter-class separability and intra-class compactness 

are maximized simultaneously. Since Softmax loss hardly 

motivates this inter-class separability and intra-class 

compactness simultaneously and explicitly, we propose a 

new method to achieve this simultaneous maximization. This 

method minimizes the distance between features of 

homogeneous samples along with Softmax loss and thus 

improves CNNs’ performance on vision-related tasks. 

Experiments on both visual classification and face 

verification datasets validate the effectiveness and 

advantages of our method. 

 

Index Terms— Convolutional neural networks (CNNs), 

Softmax loss, joint supervision, visual classification, face 

verification 

 

1. INTRODUCTION 

 

Currently, Deep Learning [1] becomes a promising research 

direction in computer vision field [2]-[6], as this technique is 

very powerful for learning data’s representation [7]. 

Compared to traditional shallow models of computational 

structures, Deep Learning models can automatically learn 

more abstract features [8], [9], and convolutional neural 

networks (CNNs) are a typical type of Deep Learning model 

[10], [11], and have been widely applied to both visual 

classification tasks [12]-[14] and face verification tasks [15], 

[16]. For a CNN model, loss function is of great significance 

to its establishment, because this function guides its gradient 

descent. In terms of visual classification and face verification, 

there are two typical loss functions: Softmax loss (cross-

entropy loss joint Softmax function) and Euclidean loss 

(mean squared error).  

Softmax loss originates from logistic regression [19] and is 

the most commonly used loss function for CNN-based 

networks, like VGGNet [21], GoogLeNet [30] and ResNet 

[31]. As it calculates the loss with cross entropy, it can 

promote strong CNN models. Intuitively, features are 

desirable when their intra-class compactness and inter-class 

separability are simultaneously maximized. Unfortunately, 

Softmax loss hardly motivates the compactness and 

separability of samples explicitly. Therefore, optimizations 

for better intra-class compactness is needed, and [20] 

proposed the Large-Margin Softmax loss (L-Softmax loss) 

for the sake of it. Despite its excellent theoretical 

improvement on the original Softmax loss, experimentally, 

this method does not outperform Softmax loss in terms of 

classification accuracy. 

Based on Euclidean loss, contrastive loss [17] is applied to 

Siamese networks which aim at learning a similarity measure 

from pairs of samples labeled as matching or non-matching, 

and triplet loss [18] is a variant of contrastive loss which aims 

at learning a margin between different classes by inputting a 

pair of homogeneous samples along with a non-homogeneous 

one. Despite the excellent discriminative capability of these 

two loss functions and their corresponding architectures, both 

of them are subjected to complex sample organization.  

Considering the drawbacks of above previous loss function, 

we propose a new method to improve CNNs’ performance. 

In this paper, we design a double-channel co-weighted 

network for homogeneous sample pairs only. This network 

achieves samples’ simultaneous maximization of their inter-

class separability and intra-class compactness by 

simultaneously minimizing Softmax loss and Euclidean loss 

between the features of homogeneous samples. As it 

optimizes Softmax loss and sample organization to a large 

extent, compared to other methods, it can not only achieve a 

higher classification accuracy but also avoid complex sample 

organization. Experiments on both visual classification 

datasets and a face verification dataset validate the 

effectiveness and advantages of our method, and the 

implementation of this paper is available at: 

https://github.com/zhouliguo/SCNet. 

 

2. THE PROPOSED METHOD 
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Here, we design a double-channel co-weighted network for 

homogeneous sample pairs, which can simplify the process 

of sample organization to a large extent and establishes the 

mutual relationship between homogeneous samples. For this 

network, there are three components should be carefully 

illustrated: input (sample organization), architecture and loss 

function, we hence introduce it in above order next. 

 

2.1. Sample Organization 

 

For contrastive loss and triplet loss, homogeneous samples 

and non-homogeneous samples should be carefully organized. 

Accordingly, the inputting quantity of sample is tremendous. 

Intuitively, there should be a mutual relationship between all 

samples in the dataset during CNNs’ training. For a dataset 

with N classes and M samples for each class, the inputting 

group number of contrastive loss SC is calculated as (1). 

𝑆𝐶 =
𝑀(𝑀−1)𝑁

2
+

𝑀2𝑁(𝑁−1)

2
         (1) 

Based on this dataset, the inputting group number of triplet 

loss ST is calculated as (2). 

𝑆𝑇 =
𝑀2(𝑀−1)𝑁(𝑁−1)

2
           (2) 

To relieve the surge of the inputting number of sample pairs, 

the contrastive tends to use a random pairing approach, triplet 

proposes both online and offline approaches of optimizing 

[18]. However, the former loses a lot of useful information 

and the latter complexes the sample organization. Despite the 

problems of pair selection, contrastive loss enlightens us to 

stimulate the similarity between samples from the same class, 

thus boosting Softmax loss. Hence, a new method of sample 

organization is developed to facilitate loss function for 

compacting features.  

As shown in Fig.1, a sample organization for our method is 

proposed to give CNNs feedbacks for the similarity between 

samples from the same class. Here, a dislocation processing 

is arranged for the image samples with the same label before 

pair matching. In that way, all image samples can efficiently 

find their partner of training, and the Euclidean loss can be 

obtained. Moreover, what is the main difference between ours 

and that of contrastive loss? Contrastive loss takes care of all 

samples from both same classes and different classes, but 

ours only deals with the pairs from same classes. 

Therefore, back to the dataset with N classes and M samples 

for each one, our inputting group number S is calculated as 

(3). 

𝑆 = 𝑀𝑁                   (3) 

In contrast to the sample organizations of previous network, 

ours enjoys the simplest process and the least inputting which 

is equal to the number of total samples. 

 

2.2. Architecture 

 

For samples from the same class, Euclidean distance can be 

used for measuring their similarity. Moreover, for samples 

from different classes, Softmax loss is needed to separate 

them out. Hence, a jointly supervised network architecture is 

proposed.  

How to develop an effective loss function to represent the 

above discriminative power? Particularly, for a pair of 

samples Ai and Ai+1 whose labels are both A, the process of 

their loss calculation is illustrated as Fig. 2. We design a 

double-channel co-weighted convolution neural network. It 

inputs two images belonging to the same class, and the upper-

level feature vectors of the two images are obtained after 

convolution and pooling layers. Based on the obtained 

vectors, their Euclidean distance loss are calculated, and one 

of the vectors will be mapped to the evidence vector for 

calculating Softmax loss. Finally, the loss function is the 

weighted sum of this Euclidean distance loss and Softmax 

loss. 

 

2.3. Loss Function 

 

Softmax loss is a typical loss function for CNNs and can be 

illustrated as follows: The loss of the i-th input sample xi 

which belongs to label yi can be obtained by (4), and the 

 
 

Figure 1. Dislocation matching process for the proposed 

method. 

 
 

Figure 2. The architecture of our network for 

classification. (Two CNNs in dashed box share weight.) 
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Softmax loss of the whole N samples can be obtained by 

averaging the loss of all input samples as (5). In (4), j 

represents number of the class, and Wyi is the i-th column of 

weight matrix. 

   𝐿𝑖 = −𝑙𝑜𝑔 (
𝑒

𝑊𝑦𝑖
𝑇 𝑥𝑖

∑ 𝑒
𝑊𝑗

𝑇𝑥𝑖
𝑗

)           (4) 

𝐿𝑆 =
1

𝑁
∑ 𝐿𝑖𝑖                (5) 

Different loss functions are applied to various tasks and thus 

determine the architecture of CNNs. For the proposed 

network, the loss function consists of two parts: the Euclidean 

loss between two homogeneous samples and the Softmax loss. 

Our loss function is formulated as (6). The β in it is a positive 

number for balancing two loss factors, and LE is calculated as 

(7). 

𝐿 = 𝐿𝑆 + 𝛽𝐿𝐸                (6) 

𝐿𝐸 =
1

2𝑁
∑ ||𝑥𝑖 − 𝑥𝑖′||2𝑁

𝑖=1           (7) 

Supervised by both the Euclidean loss and Softmax loss, the 

intra-class compactness and inter-class separability of 

samples can be explicitly motivated. 

 

3. EXPERIMENTS AND ANALYSIS 

 

This section displays a comprehensive experiment report to 

our method. To verify the effectiveness of our method, we 

test it on two computer vision applications: visual 

classification and face verification. 

 

3.1. Visual Classification 

 

In this part of experiments, we test our method on three well-

known datasets: MNIST [22], CIFAR-10 and CIFAR-100 

[23].  

TABLE I 
THE CNN ARCHITECTURE OF TESTS ON THERE DATASETS 

MNIST 

Layer 
Conv 
╳ 2 

Max 

pool1 

Conv 
╳ 2 

Max 

pool2 

Conv 
╳ 2 

Max 

pool3 
FC 

num_output 32  64  128  500 

kernel_size 5 ╳ 5 2 ╳ 2 5 ╳ 5 2 ╳ 2 5 ╳ 5 2 ╳ 2  

stride 1 2 1 2 1 2  

pad 2  2  2   

CIFAR-10 

Layer 
Conv 
╳ 5 

Max 

pool1 

Conv 
╳ 4 

Max 

pool2 

Conv 
╳ 4 

Max 

pool3 
FC 

num_output 64  96  128  256 

kernel_size 3 ╳ 3 2 ╳ 2 3 ╳ 3 2 ╳ 2 3 ╳ 3 2 ╳ 2  

stride 1 2 1 2 1 2  

pad 2  2  2   

CIFAR-100 

Layer 
Conv 
╳ 5 

Max 

pool1 

Conv 
╳ 4 

Max 

pool2 

Conv 
╳ 4 

Max 

pool3 
FC 

num_output 96  192  384  512 

kernel_size 3 ╳ 3 2 ╳ 2 3 ╳ 3 2 ╳ 2 3 ╳ 3 2 ╳ 2  

stride 1 2 1 2 1 2  

pad 2  2  2   

 

 

 

 
(a) Softmax                  (b) Ours (β=0.01)                  (c) Ours (β=0.1)                 (d) Ours (β=1) 

Accuracy: 99.35%              Accuracy: 99.55%                 Accuracy: 99.57%               Accuracy: 99.66% 

 

Figure 3. CNN-learned features visualization (Softmax Loss vs. our method when β is 0.01,0.1 and 1 in MNIST dataset.  

Specifically, we set the feature dimension as two and then plot them by class. Note that, the accuracy is the result of the 

network in Table I.) 

TABLE II 
THE CLASSIFICATION ACCURACY OF OUR METHOD 

 MNIST CIFAR-10 CIFAR-100 

Softmax 99.35% 90.51% 63.51% 

L-Softmax (m=4) 99.39% 91.39% 65.96% 

ML-DNN [26] 99.58% 91.88% 68.53% 

Highway Network [27] 99.55% 92.40% 67.76% 

Ours (β=0.01) 99.55% 92.18% 71.46% 

Ours (β=0.1) 99.57% 92.40% 71.92% 

Ours (β=1) 99.66% 92.27% 71.74% 
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The MNIST is a handwritten digit database which has 60,000 

training examples and 10,000 test examples in total. For its 

simple request for preprocessing and formatting, it has been 

widely used in experiments of pattern recognition and 

learning techniques. Moreover, the CIFAR-10 dataset 

consists of 60000 32 x 32 color images in 10 classes, with 

6000 images per class. There are 50000 training examples 

and 10000 test examples. CIFAR-100 is quite similar with 

CIFAR-10, it has 100 classes containing 600 images for each 

class. There are 500 training images and 100 testing images 

per class. These 100 classes in the CIFAR-100 are grouped 

into 20 classes.  

For experiments on MNIST dataset, we set a batch size of 60. 

Meanwhile, we start with a learning rate of 0.01, and it is 

multiplied by 0.8 at the 5K and 8K iterations and terminates 

training at 10K iterations. Moreover, for experiments on the 

other two datasets, we set a batch size of 100. Meanwhile, we 

start with a learning rate of 0.01, and it is multiplied by 0.1 at 

the 50K and 80K iterations, and finally terminate training at 

100K iterations. 

We implement the CNN model using the Caffe [24] library 

with the proposed loss function, and details of the CNN 

model architecture are given in Table I. There is a PReLU [25] 

layer behind every convolutional layer and fully connected 

layer. The classification results are compared in Table II. 

Our method shows an overwhelming advantage over others 

with the highest accuracy at 99.66% after 10,000 iterations 

based on MNIST dataset. For CIFAR-10 and CIFAR-100, 

similarly, ours enjoys the highest accuracy at 92.40% and 

71.92% respectively. According to (6), the parameter β 

dominates the intra-class variations, and it is essential to CNN 

model. Hence, we make a further analysis on this parameter, 

different β lead to different deep feature distributions. As 

concluded in Table II, the results of MNIST and CIFAR come 

to the best when β is set to 1 and 0.1 respectively. In terms of 

the feature distributions for MNIST test dataset, as illustrated 

in Fig.3, our method achieves the best performance on 

simultaneous maximization of intra-class compactness and 

inter-class separability from a two-dimensional perspective 

after 10000 iterations. 

 

3.2. Face Verification 

 

To further evaluate the learned features, we conduct a test on 

the LFW [29] database which collects 13233 face images 

from 5749 persons in unconstrained environments. We test 

6000 face pairs and report the experimental results in Table 

III. Overall, based on the same outside data, the method 

visibly outperforms others and achieves the best results at 

99.05%. 

 

4. CONCLUSION 

 

Considering that Softmax loss hardly motivates the intra-

class compactness and the inter-class separability of samples’ 

feature simultaneously. In this paper, we propose a new 

method to achieve this simultaneous maximization, and 

experiments on both visual classification datasets and a face 

verification dataset validate the effectiveness of our method. 
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