
A Deep Neural Network Approach For
Time-Of-Arrival Estimation In Multipath Channels

Oded Bialer, Noa Garnett, Dan Levi
General Motors - Advanced Technical Center Israel

Abstract—Attaining accurate estimation of a signal time-of-
arrival (TOA) in dense multipath channels is very challenging.
This problem was traditionally solved with signal processing tech-
niques. In this paper, a novel deep convolutional neural networks
(DCNN) TOA estimator is developed. The DCNN was trained
with synthetically generates multipath channel realizations based
on statistical modeling, and then tested on real-life measurements
from indoor environments. It is shown that the DCNN attains the
performance of state-of-the-art signal processing based estimators
(maximum likelihood performance), and has the advantage that
it does not require knowledge of the channel statistics nor the
knowledge of the transmitted signal waveform. This work inspires
further study on the applicability of neural networks to other
related problems, which have been traditionally solved with signal
processing methods.

I. INTRODUCTION

Precise positioning is important in many commercial, mil-
itary, and public safety applications. Time-of-flight based po-
sitioning techniques rely on measuring the signal propagation
time between two wireless devices, which essentially requires
estimating the received signal time-of-arrival (TOA). In a
free space environment, there is a single path between the
transmitter and the receiver, and thus estimating the TOA is
relatively simple. However, in indoor environment, the trans-
mitted signal is reflected by the walls, floor, ceiling, and other
objects. Therefore, there are many dense received replicas of
the transmitted signal, which make the TOA estimation of the
first signal (that corresponds to the direct line-of-sight path)
very challenging.

In the last decades numerous signal processing methods
have been proposed for estimating the TOA in multipath
channels. The exact Maximum Likelihood (ML) estimator
requires knowing the exact distribution of the multipath. In
practice, the multipath first order statistics parameters are
unknown, and may vary from one environment to the other.
In the Generalized ML (GML) approach, all the multipath
coefficients and their arrival times are jointly estimated [1].
In a typical indoor environment, the multipath is dense,
the number of paths is large and unknown, and the GML
is required to estimate too many parameters. An iterative
approximation to the GML was introduced by [2] and referred
to in this paper as SCC. In SCC the multipath coefficients
are estimated one by one and removed from the received
signal sequentially until the strongest remaining coefficient is
below a threshold, and the TOA is determined according to
the earliest arrival path. However, the successive cancelation
is imperfect and, therefore, the error cannot decrease below a

certain limit, even as the SNR increases. Simple approaches
for TOA estimation are based on filtering the received signal
with a match filter, and then searching for the first time that the
match filter energy exceeds a threshold [3]-[9]. These methods
have low complexity and perform well when the amplitude
of the first arrival component is significantly stronger than
the other multipath components, but attain inaccurate TOA
estimation when this is not the case, as is often in indoor
environments. Another approach is super resolution methods,
which includes multiple signal classification (MUSIC) [10],
and estimation of signal parameters via rotational invariance
techniques (ESPRIT) [11]. These subspace methods rely on es-
timation of the received signal autocorrelation, which requires
a large number of statistically independent channel realizations
that are not available in many cases. In the absence of statisti-
cally independent realizations, spatial smoothing techniques
can be applied at the expense of reducing the resolution.
A different approach [12]-[13] is approximating the received
signal as Gaussian with an autocorrelation that is a function
of the channel power delay profile and the transmitted signal
waveform. In this case, the maximum likelihood estimator
is derived based on the Gaussian approximation, and it has
been shown that the Gaussian estimator (GE) attains the exact
maximum likelihood performance in dense multipath, which
is justified by the central limit theorem [14].

The statistics of a multipath channel have been investigated
[15]-[18]. The IEEE 802.15.4a study group has proposed
a very well statistical channel model for indoor multipath
environments, which was obtained from extensively empirical
measurements. This channel model is frequently used in
literature for evaluating TOA estimation performance. In this
model the received signal rays arrive in clusters. The rays
have independent uniformly distributed phases in the interval
[0, 2π), and independent Nakagami distributed amplitudes
with variances that decay exponentially with cluster and ray
delay. The time of arrival of the clusters, and the rays within
the cluster have a mixture of Poisson distribution.

Recently, deep convolutional neural networks (DCNN) have
achieved state-of-the-art performance in numerous computer
vision tasks [19]-[20]. The main building block of such
networks is the convolution operation. In images, commonly
represented by 2D color channels, it allows to decode dif-
ferent visual features and their location in the images. The
main power of DCNNs comes from a series of additional
convolutions and non-linearities applied to the initial feature
representation, which can learn very complex functions that
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relate the high-dimensional input to a desired output, for
example - object detection in an image.

The main contribution of this paper is the development of
a DCNN for estimating the TOA in multipath channels, and
the performance comparison between the DCNN approach and
signal processing estimation methods. The DCNN is trained
with channel realizations that are synthetically generated from
the IEEE 802.15.4a channel model, and then tested on real-
life measurements from indoor multipath environments. The
advantage of the DCNN approach over the signal processing
methods is that it does not require knowledge of the channel
statistics, nor to know the transmitted signal waveform.

II. SYSTEM MODEL

A standard OFDM communication scheme is considered in
this paper, as depicted in Fig. 1. The OFDM transmitter is
presented in Fig. 1(a). The transmitted signal is obtained by
an inverse Fourier transform (IFFT) of the known preamble
symbol, b, and then adding a cyclic prefix (CP) before s,
which contains a segment of last samples in s. The signals
x(t), h(t), η(t) and r(t), in Fig. 1(a), denote the transmitted
analog signal, the multipath channel, the white Gaussian
additive noise, and the received analog signal, respectively.

The OFDM receiver is shown in Fig. 1(b). The received
signal, r(t), is sampled at rate 1/Ts. A coarse estimation of the
preamble TOA in the received samples, rn, is applied, and an
observation window of N samples, denoted by y, is extracted,
which is initiated at a time that is within the CP interval.
Then the preamble TOA offset in the observation window is
estimated from y.

Fig. 2 illustrates a timing diagram of the observation win-
dow y with respect to the CP and the preamble received
signals. The notation TD, in the figure, is the maximal channel
delay spread, and the notation τ0 is the preamble TOA offset
in y. It is assumed that the CP duration is larger than the sum
of the channel delay spread and the coarse TOA estimation
inaccuracy.

Fig. 1. Base band system model

The channel is assumed to be a time invariant multipath

Fig. 2. Preamble observation window, z

channel with impulse response given by

h (t) =

M−1∑
m=0

αmδ (t− τm) , (1)

where M is the number of unknown multipath components,
δ (t) is the Dirac delta, αm and τm are the random complex
coefficient and the random delay of the m-th multipath com-
ponent, respectively.

III. DCNN TOA ESTIMATOR

The DCNN was trained and tested to estimate the preamble
TOA, τ0, from the observation window y. The tested OFDM
communication system was a standard WIFI 802.11g, where
the preamble signal, b, is of length 64 with 52 nonzero bins
that span a bandwidth of 16.25 MHz. It can be shown [22] that
the observation vector y is obtained by a circular convolution
between the transmitted preamble signal s and the channel
h(t). Therefore, the DCNN input, denoted as ỹ, was chosen
as follows

ỹ =
[
y(33 : 64) y(1 : 64) y(1 : 32)

]
, (2)

where y(i : j) is a row vector containing the elements from
index i until index j in y. The vector ỹ was normalized to
unit energy, and each of the 128 complex value was split to
three inputs that were fed to the DCNN, which were the real,
imaginary and magnitude of the complex sample.

The network architecture is depicted in Fig. 3. It was
achieved through several trial and error iterations. The result
is a relatively shallow architecture that includes three con-
volutional layers (1-3), three residual blocks (4-6) [19] and
two fully connected layers. All convolutional layers use a
3× 1 spatial kernel size. No pooling is used since in our case
we want location sensitivity and not invariance. The residual
blocks aim at learning the residual difference between the
blocks input and its output which has been shown to be more
simple to learn and hence more effective in visual recognition
tasks [19]. Finally, in order to limit the output to a finite
interval ([0, 1]), we apply a sigmoid to the network’s scalar
output. The training labels are also normalized accordingly
to ([0, 1]). We used the L2 loss function, (τ̂0 − τ0)

2 , as it
corresponds directly to the target error measure. This option
performed better in our experiments compared to the Cross
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Fig. 3. Network architecture

Entropy loss. We also tested a network version in which the
output was quantized to different TOA bins and trained it
with the Piecewise-linear (PL) loss [21], which attained worse
performance.

For training the DCNN we synthetically generated 107

observation vectors, y, as in the OFDM scheme presented in
Fig. 1. The transmitted signal was a simulated WIFI 802.11g
symbol and the channel realization was randomly generated
for each observation vector from the IEEE 802.15.4a indoor
office statistical channel model [16]-[18]. The noise level was
set such that the symbol signal to noise ratio was 40 dB,
which is roughly the typical SNR value for WIFI in indoor
environment. The validation set that was used to optimize
the DCNN consisted of 104 channel realizations generated
similar to the training set. As will be shown in Section IV, the
test set that was used to evaluate the DCNN TOA estimation
performance was measured observation vectors from real-
life indoor multipath environments. Non of the measured
observations were used to train the DCNN since the number
of measurements was too small to train the network (only few
hundreds).

Implementation details. The network learning was im-
plemented in the pyTorch framework. We use the ADAM
optimizer with a batch size of 1000, momentum 0.9, and no
weight decay. The initial learning rate was 0.001.

IV. RESULTS AND DISCUSSION

Next, we present the TOA estimation performance obtained
with a test system, for two different indoor multipath environ-
ments. The test system had a universal software radio periph-
eral device [23] that recorded transmissions from off-the-shelf
802.11g WIFI routers [22]. The TOA of the received preamble
was estimated in various locations and compared to the true
TOA 1. In each environment, the performance of the DCNN
TOA estimator detailed in Sections III, was compared to three
signal processing reference methods: Gaussian estimator (GE)
[12]-[13], MUSIC [10], and successive component cancelation
SCC [2]. The performance comparison criteria was the TOA
estimation error’s cumulative distribution function (CDF).

The two tested indoor environments were: office floor, and
lobby floor, shown in Fig. 4, and Fig. 5, respectively. In
these figures, the position of the transmitting WIFI router is

1the true TOA was measured by a parallel cable link

marked by star sign, and the receiving unit was located at
100 different positions, approximately spread uniformly in all
the gray shaded areas in the figures. Both test environments,
had multipath reflections from the walls, floor, ceiling, and
furniture.

Fig. 4. Diagram of office floor test site

Fig. 5. Diagram of lobby floor

The CDF results are presented in Figures 6, and 7. The
figures show that for both test environments the DCNN and
the GE attain similar results and both outperform MUSIC and
SCC. Fig. 8 shows a comparison between the TOA estimation
errors of DCNN and GE in the office test environment. It
is seen that the TOA estimation errors of both methods are
highly correlated, and similar results were also observed for
the lobby floor test environment. We have also compared the
performance of the DCNN and GE for synthetically generated
channel realizations from the IEEE 802.15.4a office channel
model that was used for training the DCNN (but different
realizations). These CDF results are presented in Fig. 9. In
this case as well, the performance of DCNN and GE are very
similar.

It has been shown [12] that in dense multipath environments
(such as Fig. 4, Fig. 5, and IEEE 802.15.4a indoor office
channel model) the GE attains the exact Maximum Likelihood
performance. It is well known that the Maximum Likelihood
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estimator asymptotically attains minimum variance (Cramer-
Rao lower bound). Hence the results of Figs. 6-9 show that
the DCNN TOA estimator attains the Maximum Likelihood
performance, with no prior knowledge on the channel statistics
nor the transmitted signal waveform. Furthermore, the fact
that the DCNN network attained state-of-the-art performance
in real-life indoor multipath channels, while it was trained
with synthetically generated channels from the IEEE 802.15.4a
channel models, shows that these channel models have close
correspondence to the real-life multipath channels.

Error [m]
0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GE
DCNN
MUSIC
SCC

Fig. 6. TOA estimation error CDF for measurements of WIFI 802.11g in
an office floor environment.
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Fig. 7. TOA estimation error CDF for measurements of WIFI 802.11g in a
lobby floor.

V. CONCLUSIONS

A classical signal processing problem of TOA estimation
in multipath channels was solved using a nontraditional deep
neural network approach. It has been shown that a deep neural
network can attain the estimation accuracy of the state-of-the-
art signal processing methods that achieve maximum likeli-
hood performance in dense multipath. It was also shown that
the IEEE 802.15.4a statistical channel models are sufficiently
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Fig. 8. TOA estimation errors in office floor
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Fig. 9. TOA estimation error CDF for IEEE 802.15.4a office environment
(Channel 3)

representative for training a network that is tested on real-
life indoor multipath channels. This work inspires the use of
deep neural networks to solve other related signal processing
problems for which there exists a good statistical model for
the measurements, yet deriving an analytical estimator that op-
timizes a certain performance criteria is not practicable/viable.
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