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ABSTRACT

In this paper, we propose Confidence Network (ConfNet)
which not only makes predictions on input images but also
generates a confidence score that estimates the probability
of correctness of each prediction. Furthermore, Confidence
Loss is proposed to make ConfNet automatically learn confi-
dence scores in the training phase. The experiments on two
public datasets show that the confidence scores generated
by ConfNet are highly correlated with the model accuracy
and outperforms two related methods. When stacking two
ConfNets in a cascade structure, 3.8x computational cost can
be saved compared to the single state-of-the-art model with
only 0.1% increase of error rate.

Index Terms— Convolutional Neural Network, Deep
Learning, Confidence score, Model Cascade

1. INTRODUCTION

Recently, Convolutional Neural Network (CNN) has been
widely applied to real-world tasks, such as speech recognition
[1], face detection [2], and audio classification [3]. Despite
its high accuracy, each CNN model tends to have difficulty in
predicting certain classes due to the common training issues
including unbalanced training dataset and limited model ca-
pacity. Therefore, estimating how much confidence a CNN
model has in its prediction is a crucial problem. In this paper,
we take one step further to ask, ”Can CNN models explicitly
estimate the probability of correctness of each classification
prediction?” In other words, we aim to design a network
which gives high confidence scores when it has strong faith
in its predictions and provides low confidence scores when
facing unrecognized input samples.

This topic has been implicitly discussed by many recent
works in different computer vision tasks. Redmon et al. [4]
[5] propose an end-to-end object detection network which
predicts a number of bounding boxes and the probability of
each bounding box containing an object. This probability can
be considered as the confidence score for the bounding box.
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Fig. 1: The illustration of stacked ConfNets.

In face detection tasks, some works [2] [6] use the class prob-
ability generated by CNN models as the confidence score to
quickly reject noises and only the predictions with high class
probabilities are preserved. In [7], Wang et al. utilize the en-
tropy of class probabilities to classify the hard samples into
an additional “I don’t know” class.

In this paper, we propose an end-to-end CNN frame-
work for image classification, called Confidence Network
(ConfNet). Given a test image, ConfNet simultaneously
makes the classification prediction and provides a confidence
score that estimates the correctness of the prediction. In com-
parison with traditional CNN frameworks, additional layers
are added after the Softmax layer to generate the confidence
score. Since the training dataset itself does not contain train-
ing labels for confidence scores, a novel loss function, called
Confidence Loss, is proposed which allows ConfNet to learn
its confidence score automatically in the training phase by
leveraging the negative correlation between the model accu-
racy and the cross entropy loss.

We evaluate our approach on two public image classifi-
cation datasets, Cifar10 [8] and ImageNet [9]. The results
show that the confidence scores predicted by our CNN mod-
els are highly positively correlated with the model accuracy
and outperform two related methods. In addition, we stack
two ConfNets to form a cascade structure as shown in Fig.
1. All input samples are first classified by a shallow model.
Then, the confidence score of each prediction is employed as
a threshold to identify hard samples. These samples are sent
to a deeper CNN model for more accurate prediction. Us-
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Fig. 2: The structure of Confidence Network.

ing this design, the stacked framework can significantly save
computational cost and achieve high accuracy.

2. PROPOSED METHOD

In this section we first discuss the limitations of two previ-
ous methods and introduce ConfNet and its core layers. Next,
Confidence Loss is proposed to allow ConfNet to learn confi-
dence scores without additional labels in the training datasets.

2.1. Confidence of Prediction

Most modern deep learning models for classification are
trained to predict Pmodel(y|x), the class probabilities con-
ditioned on input sample x, by optimizing the cross entropy
loss, which is given as

JEntropy(x, y) = −
K∑

k=1

yk · logPmodel(y
k|x) (1)

where K denotes the number of classes and yk is the label
of kth class given by the training dataset. In order to min-
imize the cross entropy loss, the distribution of class prob-
abilities predicted by CNN model is encouraged to present
as a one hot vector when the prediction is correct [10]. By
contrast, when a CNN model is not certain about prediction,
the smooth distribution of class probabilities is generally ob-
served. This suggests a conceptual connection between the
distribution of class probabilities and the model accuracy.

Many recent works try to link class probabilities distribu-
tion to model accuracy. Li et al. [2] and Ranjan et al. [6]
utilize the maximum of class probabilities as the confidence
score to classify hard samples. Empirically, we notice that
the distribution of class probabilities is able to provide more
information than the maximum probabilities alone. The dif-
ferences among class probabilities should also be considered
to estimate the prediction correctness. Wang et al. [7] use the
entropy of class probabilities as the confidence score. How-
ever, the range of entropy varies with respect to the number
of classes. This cause difficulty in building a mapping from
entropies to confidence scores. Inspired by these works, we

propose an end-to-end network to estimate confidence scores
for classification by leveraging the great representation power
of neural networks.

2.2. Confidence Network

In this subsection we describe the structure of ConfNet and
its core layers. As shown in Fig. 2, ConfNet consists of
two stages. The first stage is a general classification network
which takes images as input and generates the class proba-
bilities. In general, the class with maximum probability is
selected as the model prediction for the input sample. It is
worth noting that the framework of the classification network
can be replaced with different CNN frameworks that match
the resource restrictions (latency, accuracy) such as Alexnet
[11], VGG-16 [12], and Resnet [13].

The second stage of ConfNet is a mapping network that
maps the class probabilities generated in the previous stage to
a single confidence score. The mapping network is composed
of a Sorting layer, a Fully Connected layer and a Sigmoid
layer. The Sorting layer takes class probabilities as input and
sorts the probabilities in descending order. The number of
output neurons of the Sorting layer is the same as the number
of classes. This layer removes the class information from the
class probabilities and the following layers are hence able to
focus on mapping the distribution of class probabilities to the
model accuracy. After the Sorting layer, a Fully Connected
layer with one output neuron is employed to derive the map-
ping. Weights in Fully Connected layer represent the con-
tribution of each probability to the confidence score. Since
the confidence score is expected to estimate the probability of
prediction correctness, a Sigmoid layer is adopted as the last
layer of the mapping network to limit the output between 0
and 1.

2.3. Confidence Loss

The probability of correctness of each prediction depends on
the difficulty of each input sample and the performance of
CNN model. This uncertainty results in the lack of ground
truth labels for the confidence score. To solve this problem,
we propose Confidence Loss which leverages the negative
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correlation between the model accuracy and the cross entropy
loss. Confidence score of each prediction can be estimated
by observing the cross entropy loss. Confidence Loss on a
mini-batch {(xi, yi)}Ni=1 is given as:

J(α) =
1

N

N∑
i=1

CSi · JEntropy(xi, yi)− αlog(CSi) (2)

where N denotes the batch size, CSi denotes the confidence
score of ith prediction generated by ConfNet in this batch, and
α is a hyper parameter to balance the regularization strength.

The first term of the objective function is the cross entropy
loss scaled by the confidence score and the second term is a
regularization term. Optimizing this objective function leads
to two cases. (i) When the input sample can be easily classi-
fied and the expected cross entropy loss is low, a higher con-
fidence score is preferred to reduce the regularization term.
(ii) When a hard sample results in a high cross entropy loss,
lower confidence score can effectively reduce the first term
of the objective function. In the training phase, the mapping
network of ConfNet tries to estimate the cross-entropy loss
first and generates the corresponding confidence score to min-
imize the overall loss. This objective function allows ConfNet
to learn confidence scores automatically without additional
labels from the training dataset.

Our proposed approach is different to the “I don’t know’
(IDK) methods [7] [14] [15] in many aspects. First, the IDK
methods classify the ambiguous samples into an additional
IDK class. The classification results are within either the orig-
inal classes or the IDK class. In ConfNet, we still classify
samples into the original classes and further provide a con-
fidence score for estimating the reliability of this prediction.
Moreover, the IDK methods focus on identifying hard sam-
ples whereas ConfNet aims to estimate the expected accuracy
for each prediction.

3. EXPERIMENTS

We evaluate our ConfNet on two public image classification
datasets, Cifar10 [8] and ImageNet [9], with a number of pop-
ular CNN frameworks including NIN [16] and Resnet series
[13]. All experiments are conducted in Caffe [17]. For model
training, we first transfer the weights from the pre-trained
classification model, which is downloaded from Caffe Model
Zoo, to the classification network of ConfNet and randomly
initialize the weights of the mapping network. Then, we fine-
tune ConfNet to optimize the confidence loss with hyper pa-
rameter α = 0.5 until the confidence loss converges. All
results reported in following experiments are evaluated on the
validation set of the two classification datasets.

3.1. Cifar10

We first show the relation between the confidence score and
the model accuracy. We record the precision and the recall

Fig. 3: Precision and Recall under different thresholds of the
confidence score. The confidence score highly correlates to
model accuracy in both frameworks.

on the testing samples when their corresponding confidence
scores are higher than threshold. As shown Fig. 3, the con-
fidence score generated by ConfNet highly correlates to the
model accuracy in both frameworks with higher confidence
score corresponding to more accurate predictions. To our sur-
prise, ConfNet achieves over 95% precision with nearly 95%
recall in both frameworks. It means that most of predictions is
accurate and we can identify those predictions by using con-
fidence scores.

We further define an evaluation metric, called Mean Ef-
fective Confidence (MEC), for comparative evaluation as
follow:

MEC =
1

n

n∑
i=1

Ci ∗Normalize(CSi), (3)

Ci =

{
1, ith prediction is correct.
−1, ith prediction is wrong.

(4)

where n is the number of testing samples, Ci denotes the
correctness of ith prediction and Normalize(.) denotes the
linear normalization function which sets the confidence score
of each method between 0 to 1 for fair comparison. Note that
since there are 10 classes in Cifar10, the maximum of class
probabilities ranges from 0.1 to 1 and the entropy of class
probabilities ranges from log210 to 0. This metric evaluates
how much the confidence score relates to the correctness of
prediction. Correct predictions with high confidence scores
and wrong predictions with low confidence scores lead to
large MEC.

Table 1: Performance comparison of MEC with two related
methods on Cifar10 dataset

Methods
MEC

NIN Resnet-20

Maximum of class probabilities 80.14% 80.74%

Entropy of class probabilities 81.75% 82.50%

ConfNet 83.48% 83.33%
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Table 2: Performance comparison with state-of-the-art single models on Cifar10 dataset

Single model / Cascade structure Threshold of Confidence score Error rate Average flops per image (×107)

NIN [16] - 9.34% 22

Resnet-20 [13] - 8.75% 4.1

Resnet-44 [13] - 7.17% 9.7

Resnet-56 [13] - 6.97% 12.5

Resnet-110 [13] - 6.43% 24.3

DenseNet(L=100,k=12) [18] - 5.77% 146.2

Stacked ConfNets (Resnet-20 + Resnet-110) 0.960 7.22% 5.3

Stacked ConfNets (Resnet-20 + Resnet-110) 0.965 6.93% 5.7

Stacked ConfNets (Resnet-20 + Resnet-110) 0.970 6.53% 6.6

As shown in table 1, our method outperforms two related
methods. This result demonstrates that the confidence score
generated by ConfNet can predict the probability of predic-
tion correctness better.

In addition, we stack two ConfNets to form a Cascade
structure, which is widely used in computer vision tasks
[19] [2] [6] [7] to accelerate the classification. As shown in
Fig. 1, we cascade two ConfNets with different classification
frameworks. One image will be first classified by the first
ConfNet with a shallow classification framework. If the con-
fidence score is lower than a pre-defined threshold, this image
would be considered as a hard sample and fed into the deeper
ConfNet for more accurate prediction.

We evaluate the performance of stacked ConfNets on Ci-
far10. The error rate and the average flops per image are
shown in table 2. By varying the threshold of confidence
score, it is easy to find different trade-offs between testing
accuracy and computational cost. Compared with the single
Resnet-110 model, our stacked ConfNets which consists of
Resnet-20 model and Resnet-110 model can save 3.8 times
computational cost with only 0.1% increase of error rate.

3.2. ImageNet

To show the generalization of Confidence Network, we also
evaluate our proposed method on ImageNet [9]. We se-
lect pre-trained Resnet-18 as the classification framework of
ConfNet and fine-tune until confidence loss converges. Fig
4 shows that the confidence scores generated by ConfNet are
highly correlated with the top-1 accuracy and top-5 accuracy
in this large scale dataset.

4. CONCLUSION

In this paper, we propose Confidence Network (ConfNet)
which not only generates accurate predictions, but also pro-
vides a confidence score to estimate the probability of correct-
ness of each prediction. With this confidence score, we can

Fig. 4: Precision and Recall under different thresholds of the
confidence score. The confidence score highly correlates to
top-1 accuracy and top-5 accuracy.

easily estimate the reliability of model prediction. For model
training, we design Confidence Loss to allow ConfNet to
learn confidence scores automatically without extra training
labels.

We evaluate our proposed network on two popular datasets
with different CNN frameworks. The results prove that con-
fidence scores generated by ConfNet are highly correlated
with model accuracy and our approach outperforms two re-
lated methods. Moreover, by stacking two ConfNets, we pass
the images first through a shallow light model and further
process the images which are hard to classify with a deeper
model. The cascade structure for classification can signif-
icantly save the computation cost compared to the single
state-of-the-art model.
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