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ABSTRACT
Long short-term memory (LSTM) is normally used in recur-
rent neural network (RNN) as basic recurrent unit. How-
ever, conventional LSTM assumes that the state at current
time step depends on previous time step. This assumption
constraints the time dependency modeling capability. In this
study, we propose a new variation of LSTM, advanced LSTM
(A-LSTM), for better temporal context modeling. We em-
ploy A-LSTM in weighted pooling RNN for emotion recog-
nition. The A-LSTM outperforms the conventional LSTM by
5.5% relatively. The A-LSTM based weighted pooling RNN
can also complement the state-of-the-art emotion classifica-
tion framework. This shows the advantage of A-LSTM.

Index Terms— multi-task learning, attention model, A-
LSTM, recurrent neural network, emotion recognition

1. INTRODUCTION
Recurrent neural network is recently used as a dynamic
model for sequential input. Long short-term memory (LSTM)
is usually adopted as basic units in RNN because it is able
to solve the gradients vanishing and exploding problems in
RNN training [1]. It uses memory cell and gates to control
whether information will be memorized, output or forgotten.
The LSTM takes two inputs, output from lower layer and
output from previous time step in current layer. This config-
uration implies an assumption that the current state depends
on the state of previous time step. This assumption of time
dependency may constraint the modeling capability of RNN.
In this paper, we propose a new variation of LSTM, advanced
LSTM (A-LSTM), to address this issue. In A-LSTM, current
state depends on multiple states of different time steps. This
releases the constrains in conventional LSTM and provides
better time dependency modeling capability.

This paper presents our early study on A-LSTM. We ex-
plore the modeling capability of A-LSTM in the application
of voice-based emotion recognition. Recognizing emotion
will improve the user experience of voice-based artificial in-
telligence (AI) product, like Siri, Alexa. Even though re-
cent research shows combining audiovisual speech process-
ing systems can have better performance than audio only sys-
tem ([2, 3, 4, 5]), based on audio in real world. The in-
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put voice to system in real application may contains long si-
lence (or pause) or non-speech voice filler, the conventional
low level statistics feature like Interspeech 2010 paralinguis-
tic challenge feature set (IS10) or GeMAPs [6, 7], may fail.
Weighted pooling based on attention mechanism is an appeal-
ing solution for these cases [8], which relies on RNN. We built
an attention based weighted pooling framework with multi-
task learning for emotion recognition in this study. When we
apply A-LSTM in this framework, it gains 5.5% relative im-
provement compared with conventional LSTM.

The remaining of the paper is organized as following
structure. Section 2 reviews previous work. Section 3 intro-
duces the IEMOCAP corpus. Besides, the acoustic feature
extraction is also described. Section 4 describes the details of
the proposed approach. Section 5 describes the experiments
and analysis of results. Section 6 concludes the work and
leads to the future direction of the work.

2. RELATED WORK
[9, 10, 11] show that temporal information is beneficial to
emotion identification. [12, 13, 14] show that the perfor-
mance of the neural network will be improved when higher
layers can see more time steps from lower layer. These works
rely on DNN rather than RNN. They do not discuss the tim-
ing sequence modeling. [15, 16] propose solutions to having
alternative connections between layers in DNN. These solu-
tions are different from the conventional connections within
network. [17, 18] modify the LSTM architecture relying on
residual or highway connection. However, the modifications
in these papers are focusing on connecting the memory cells
between lower and higher layers. They do not modify the con-
nection within the same layer. [19] modifies the output hidden
value to higher layer by a weighted summation. [20] follows
similar idea. It uses weighted pooling of the hidden values of
multiple historic time steps at each time steps which improves
the information richness to higher layer. This is equivalent to
allow higher layer see more time steps. But they do not mod-
ify the memory cell which means the time dependency is not
changed. [21] shows that the combination of near time steps
may not improve the system a lot. The combination should
contain a long term range. Besides, they do not combine the
multiple states at each step, which is different from the high
order RNN. For emotion recognition, [8] recently proposes at-
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tention based weighted pooling RNN to extract acoustic rep-
resentation. The work shows the weighted pooling RNN can
outperform conventional pooling approach, like mean, max-
imum, or minimum. It also shows the RNN framework can
capture the section of interest. Multi-task learning recently
shows its advantage in emotion recognition task [22, 23]. But
in these papers, the regression of valence and arousal values
are normally set as auxiliary tasks, which is hard to obtain.

3. CORPUS DESCRIPTION AND FEATURE
EXTRACTION

We validate A-LSTM in the application of categorical emo-
tion classification. We used IEMOCAP [24] corpus in this
study which has 5 sections and 10 actors in total. In each
section, there were two actors (one male and one female) in-
volved in scripted or spontaneous scenarios to perform spe-
cific emotions. The utterances were segmented and with one
categorical label, which is among angry, fear, excited, neu-
tral, disgust, surprised, sad, happy, frustrated, other and XXX.
XXX was the case that the annotators were not able to have
agreement on the label. The corpus has 10039 utterances with
average duration of 4.5 s per utterance (12.55 hr in total). The
distribution of emotion classes is not balanced. In this study,
we select 4 classes, neutral, happy, angry and sad. The total
number of utterances used is 4490.

The corpus has video and audio channels. We only used
audios in this study. The audio was collected by high qual-
ity microphones (Schoeps CMIT 5U) at the sample rate of 48
kHz. We downsampled them to 16 kHz and extracted a 36D
acoustic feature. The acoustic feature includes 13D MFCCs,
zero crossing rate (ZCR), energy, entropy of energy, spectral
centroid, spectral spread, spectral entropy, spectral flux, spec-
tral rolloff, 12D chroma vector, chroma deviation, harmonic
ratio and pitch. The extraction was performed within a 25 ms
window whose shifting step size was 10 ms (100 fps). The
acoustic feature sequence was z-normalized within each ut-
terance.

4. PROPOSED APPROACH
4.1. Attention Based Weighted Pooling RNN
Attention based weighted pooling RNN is a data-driven
framework to learn utterance representation from data, which
is suitable for practical application [8]. It relies on the atten-
tion mechanism [25] to learn the weight of each time step.
The weighted summation is then computed as the representa-
tion of the whole utterance. Multi-task learning incorporates
several aspects of knowledge into training, therefore it can
learn better representation.

The system diagram is shown in Figure 1. The diagram
has two parts, trunk and branch (two dashed boxes in the dia-
gram). The branch part contains sub-parts for different tasks.
In this study, there are three sub-parts, whose tasks are emo-
tion, speaker and gender classification respectively. The trunk
part is the shared part of all tasks, which will process input
and extract representation for classification tasks. On top of
the trunk part, there is a layer of weighted pooling based on

Fig. 1. The attention based weighted pooling RNN. The
LSTM layer is unrolled along the time axis (time t1 to tn).
The trunk part has the layers that are shared by all the tasks.
On top of the trunk part, there is branch part for tasks. The
main task is emotion classification. The auxiliary tasks are
speaker and gender classifications.

attention. The pooling is computed as Equation 1, where hT

is the hidden value output from the LSTM layer at time T ,
and AT is a scalar number representing the corresponding
weight at time T . AT is computed in a softmax fashion fol-
lowing Equation 2, where W is a parameter to be learned.
exp(W · hT ) represents the potential energy at time T . This
is similar to attention mechanism. If the frame at time T has
high potential energy, its weight will be high and therefore
gain high “attention”; if the potential energy is low, the weight
and “attention” will also be low. By this way, the model can
learn to assign weights to different time steps from data.

If weights at all time steps are same, the weighted pooling
is equal to arithmetic mean.

WeightedPooling =

tn∑
T=t1

AT × hT (1)

AT =
exp(W · hT )∑tn

T=t1 exp(W · hT )
(2)

In this study, we define that trunk part has two hidden
layers. The first layer is fully connected layer which has
256 RELU neurons. The second one is a bidirectional LSTM
(BLSTM) layer with 128 neurons. The hidden values go to
weighted pooling layer after the LSTM layer. In the branch
part, each task has one fully connected hidden layer with 256
RELU neurons and one softmax layer performing classifica-
tion.

4.2. Advanced LSTM
Conventional LSTM tasks take the output from lower layer
and previous time step as input and feed value to higher layer.
The gating mechanism is used to control information flow by
point-wise multiplication (denoted as � operation in the fol-
lowing contents). There is a cell to memorize information
within the unit. The diagram is shown in Figure 2.

The cell is updated as Equation 3, where ft and it are the
forgetting and inputting gates at time t. C̃t is new candidate
cell values. It is computed as Equation 4, where tanh is the
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C(t-2) C(t-1) C(t) C(t+1)

X(t-2) X(t-1) X(t) X(t+1)

h(t-2) h(t-1) h(t) h(t+1)

Fig. 2. The unrolled conventional LSTM. Unrolling is along
the time axis. The C is the cell memory, X is the values from
lower layer, and h is the hidden values to higher layer. State
at time t depends on the one at time t − 1 in conventional
LSTM.

C(t-2) C(t-1) C(t) C’(t)

X(t-2) X(t-1) X(t)

h(t-2) h(t-1) h’(t)

C(t+1)

X(t+1)

h(t+1)

Fig. 3. The unrolled A-LSTM. Unrolling is along the time
axis. The C is the cell memory, X is the values from lower
layer, and h is the hidden values to higher layer. The dashed
box is a weighted summation operation to combine the states
at time t − 2, t − 1 and t. C ′ and h′ is new cell memory and
hidden value after combination. They are passed to compute
the states at time t+ 1.

activation function, WC is a set of weights to be learned, bC
is the bias, and [ht−1, xt] is the concatenation of the values
from previous time step (h value) and lower layer (x value).
h value at time t is computed by Equation 5, where ot is out-
putting gate. The state at time t depends on the state at time
t− 1, because Ct is computed based on ht−1 and Ct−1. The
computation about controlling gates are omitted for simplifi-
cation.

Ct = ft � Ct−1 + it � C̃t (3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

ht = ot � tanh(Ct) (5)
The A-LSTM is different from the conventional one. It re-

leases the assumption that time t state depends on time t − 1
state. It use weighted summation of multiple states at differ-
ent time steps to compute cell (C value) and hidden (h value)
values. The diagram is shown in Figure 3.

In A-LSTM, Equation 3 is modified to Equation 6, and
Equation 4 is modified to Equation 7. C ′ is a weighted com-
bination of states at selected time steps. It is computed fol-
lowing Equation 8, where T is the set of selected time steps.

For example, t− 2, t− 1 and t are selected to compute t+ 1
state in Figure 3. If we denote the index of time point (t+1) as
0, T is denoted as a set of {3,2,1}. In the remaining contents,
we follow the same naming convention to show our configu-
ration of A-LSTM. WCT

is a scalar number representing the
corresponding weight at a time step. It is learned from Equa-
tion 9. Hidden value h at time t is computed following Equa-
tion 10. It is same as Equation 5 except the cell value now
is C ′. h′ is then computed following Equation 11 and 12. h′

is weighted combination of hidden values at selected steps in
set T . In Equation 9 and 12, W is shared parameter learned
from data. Therefore, C ′ and h′ contains the states and hid-
den values information in set T . They are computed every
max(T ) steps in this study. For example, in Figure 3, they
are computed every 3 steps (t− 2,t− 1,t are used to compute
t+1; t+1,t+2,t+3 are used to compute t+4; and so on).

A-LSTM is able to allow more flexible time dependency
modeling capability. It makes the cell to recall far back his-
toric records. Recalling every once in a while will be like
the human learning mechanism, which makes learning better.
Therefore the cell memory can memorize information better
compared with conventional LSTM.

Ct = ft � C ′t−1 + it � C̃t (6)

C̃t = tanh(WC · [h′t−1, xt] + bC) (7)

C ′ =
∑
T

WCT
× CT (8)

WCT
=

exp(W · CT )∑
T exp(W · CT )

(9)

ht = ot � tanh(C ′t) (10)

h′ =
∑
T

WhT
× hT (11)

WhT
=

exp(W · hT )∑
T exp(W · hT )

(12)

5. EXPERIMENTS AND RESULTS
We evaluate our proposed A-LSTM on selected utterances
from IEMOCAP corpus, which belonged to neutral, happy,
angry and sad classes. We run two sets of experiments. In
the first one, we compared different types of LSTMs. All the
systems were based on weighted pooling RNN framework.
In the second one we compared RNN framework with a deep
neural network (DNN) framework, which represents current
state-of-the-art system on IEMOCAP. Multi-task learning
was applied during all the systems. The weights for emotion,
speaker and gender classification were 1, 0.3, 0.6 respec-
tively. We randomly selected 1 male and 1 female as testing
subjects. The data from other subjects were used as training
data. 10% of the training data was used as validation data to
check whether we need early stopping. The early stopping
criteria was that in continuous 3 epochs, the accuracy on the
validation data was lower than the highest accuracy.
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Table 1. The performance of baseline and proposed systems.
MAF is macro average F-score. MAP is macro average pre-
cision.

Approach MAF MAP Accuracy (%)

conventional LSTM 43.8 64.3 52.7
mean LSTM 43.5 64.3 52.8

advanced LSTM 46.2 65.8 55.3

Macro average F-score (MAF) (also named as unweighted
average F-score) macro average precision (MAP) (also
named as unweighted average precision) and accuracy were
used as performance metrics. The metrics were computed
with the open source tool, Scikit-learn [26]. Since the classes
were imbalanced, we mainly rely on the MAF for perfor-
mance evaluation.

5.1. Weighted Pooling RNN Results
We built up two baseline systems for comparison under the
RNN framework. The first one used conventional LSTM.
The second one used recurrent unit that was similar to the A-
LSTM structure except that WCt

and Wht
were fixed. They

were determined to same values which made the combination
equivalent to arithmetic mean of the states at selected time
steps. We therefore name it as “mean LSTM”. The proposed
framework used A-LSTM as recurrent unit. The parameter
details of the neural network has been described in Section
4.1. Dropout was used in all the layers in the network except
the attention based weighted pooling layer and the parameter
of W in Equation 9 and 12. The dropout rate was 0.5. The set
of T for A-LSTM used in this experiment was {5, 3, 1}. The
time steps were selected every 2 time points. It was observed
in pilot experiment that the training would be difficult when
too many times steps in T , we therefore fixed to 3 selected
time steps. Adam [27] was used as optimizer. The batch size
for all systems was 32.

The performance of the two baseline systems and the pro-
posed systems are listed in Table 1. Comparing A-LSTM and
conventional LSTM shows that the A-LSTM is able to out-
perform the conventional LSTM by 5.5% in terms of MAF.
Since the weighted pooling layer can see the hidden values
from all time steps, this improvement is not from the benefit
of seeing more time steps in higher layer. It leveraged the ad-
vantage of the flexible time dependency modeling capability
of A-LSTM. This is especially useful in emotion recognition,
because emotion is usually shown a state within a range of
time steps rather than at a time step instantly. In this study,
we have 256 neurons in the BLSTM (each direction has 128
neurons), so we only need add 256 parameters, which is the
W size, to achieve this improvement. This cost can be ig-
nored compared with about 600 k parameters of network.

The results also show that there is no improvement when
we fixed the weights. Comparing mean LSTM and A-LSTM
implies that learnable weights are better. Learning weights
as a framework of data-driven assignment allows the model
to make the assignment according to different situations. It
is better because time dependency may vary at different time

Table 2. The comparison between DNN and RNN frame-
works. “IS10” is Interspeech 2010 feature set. “Seq” is the
sequential acoustic feature. “RNN+DNN” is the fusion result.

Approach feature MAF MAP Accuracy (%)

DNN IS10 56.9 66.8 58.2
RNN Seq 46.2 65.8 55.3

RNN+DNN IS10+Seq 58.2 69.6 58.7

steps.

5.2. Comparison between RNN and DNN Frameworks
We also built a DNN with multi-task learning for compar-
ison. The network has two parts, shared part and separate
part. The former part is shared by all the tasks, which has
2 fully connected layers with 4096 RELU neurons per layer.
The later part has 3 separate sub-networks respectively for 3
tasks. Each sub-network has 1 fully connected layers with
2048 RELU neurons. On top of that, there is a softmax layer
for classification. The batch size was 32 and dropout rate
was 0.5. The optimizer was stochastic gradients descending
(SGD). We used IS10 feature set extracted with openSMILE
[28] as input because it was suitable for the three tasks. IS10
was z-normalized based on the mean and variance from train-
ing part. We also used the tool of Focal [29] to fuse the results
from these two frameworks.

The results of the experiment are shown in Table 2. It
is shown that the RNN framework is about 23.2 % worse
than DNN framework. There are two reasons here. First,
we have very limited data, which is only about 3200 training
utterances. This amount may not train RNN framework suffi-
ciently, especially training RNN is more difficult than DNN.
Second, all the utterances were well segmented in IEMOCAP.
It may not have long silence and pause as the situation in real
world. The fusion result shows combining the two frame-
works is better than either single one. It indicates that RNN
framework can complement the DNN even with few training
data. Besides, there are about 58 M parameters in DNN which
is about 100 times as the one in RNN which means that RNN
will have low hardware requirement when it is employed.

6. CONCLUSION AND FUTURE WORK
We proposed a new type of LSTM, A-LSTM, in this pa-
per. This was a early study of A-LSTM. We applied it in
the weighted pooling RNN for emotion recognition. It is
shown that the A-LSTM can outperform the conventional
LSTM under weighted pooling RNN framework with few
extra parameters. The improvement leverages the advantage
of flexible time dependency modeling capability in A-LSTM.
Even though the weighted pooling RNN framework can not
beat the state-of-the-art DNN framework on IEMOCAP, it
can complement the DNN to achieve better performance. It
also has the advantage in practical application in real world.

Future work is necessary to explore A-LSTM in other
tasks. The idea of combining states at multiple time steps can
also be extended to gated recurrent unit (GRU) in the future.
More data is also needed for training the RNN framework.
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