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ABSTRACT 
 
This paper presents a novel approach for estimating auto-
regressive (AR) model parameters using deep neural network 
(DNN) in the AR-Wiener filtering speech enhancement. 
Unlike conventional DNN that predicts one kind of target, the 
DNN used in this paper is trained to predict the AR model 
parameters of speech and noise simultaneously at offline 
stage. We train this network by minimizing the Euclidean 
distance between the output of DNN and the AR model 
parameters of clean speech and noise. At online stage, the 
acoustic features are first extracted from noisy speech as the 
input of the DNN. Then, AR model parameters of speech and 
noise are estimated by the DNN simultaneously. Finally, the 
Wiener filter is constructed by the AR model parameters of 
speech and noise. However, the AR model parameters only 
models the spectral shape not the spectral details, there are 
still some residual noise between the harmonics. In order to 
solve this problem, we introduce the speech-presence 
probability (SPP), that is, in the test stage, the SPP is 
estimated and is used to update the Wiener filter. The 
experimental results show that our approach has higher 
performance compared with some existing approaches. 
 

Index Terms— speech enhancement, deep neural 
network, auto-regressive model, speech-presence probability, 
Wiener filter 
 

1. INTRODUCTION 
 

Speech enhancement aims to suppress the background noise 
while maintaining the quality and the intelligibility of speech. 
There are a lot of classical approaches, such as spectral 
subtraction [1], statistical model-based method [2][3], and 
subspace-based method [4][5]. These methods are very 
suitable for removing stationary noise but have poor 
performance in non-stationary noise condition. It is mainly 
because that these methods cannot follow the rapid changes 
of non-stationary noise energy.  

In order to remove the non-stationary noise, some 
codebook-driven methods [6][7][8][9] have been proposed in 
recent years. In these methods, the codebooks containing the 
spectral shape information are trained offline using LBG [10] 
algorithm. In these methods, the Sparse Hidden Markov 

model-based method could estimate the AR gains of speech 
and noise effectively [8]. In this method, the likelihood 
criterion for finding the model parameters is augmented with 
a regularization term, which encourages sparsity in the AR 
models of speech and noise. 

Although codebook-driven speech enhancement 
methods are suitable for suppressing the non-stationary noise, 
there are some drawbacks. The first one is that the codebooks 
only have prior information of spectral shapes but not the 
spectral details, which result in much harmonic noise. The 
second one is that codebooks have some quantization error in 
the training process offline. 

Deep neural network (DNN) has played an important 
role in speech enhancement. For example, reference [11] well 
applied DNN to remove the background noise. In the training 
stage, the acoustic features of log spectral power of noisy 
speech and the training targets of log spectral power of clean 
speech are fed into DNN. In the test stage, the acoustic 
features of log spectral power of noisy speech are extracted 
same as the training stage, and the acoustic features are fed 
into DNN to obtain the log spectral power of clean speech. 
Test results show that this method can achieve significant 
improvements in both objective and subjective measures. In 
the reference [12], the DNN was used to estimate the ideal 
ratio mask (IRM) in the Gammatone domain. In the test stage, 
the estimated IRM is used to mask the time-frequency (T-F) 
unit. In this way, the target speech’s T-F units is preserved in 
the synthetic speech. The results showed that this mask-based 
method is better than the feature mapping-based methods [12]. 

In our proposed method, the DNN is trained to estimate 
the AR model parameters of speech and noise simultaneously 
because of the good prediction performance of the DNN. In 
the training stage, the acoustic features are first extracted as 
the input of DNN. The training targets of DNN are the 
connected vectors of AR model parameters of speech and 
noise. Here, we use the linear spectrum frequency (LSF) 
parameters [13] of speech and noise as the training targets and 
connect them to form a target vector. The network is trained 
by minimizing the Euclidean distance between the output of 
DNN and the training target. In the test stage, the acoustic 
features are extracted from the mixture firstly. Secondly, the 
acoustic features are fed into the DNN to obtain the AR model 
parameters of speech and noise. Thirdly, the multiplicative 
update rule [9] is adopted to estimate the AR gains. At last, 
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the AR-Wiener filter is constructed by the AR model 
parameters of speech and noise. On this basis, in order to 
remove residual noise between the harmonics, speech-
presence probability (SPP) [14] is adopted to update the AR-
Wiener filter. 

The paper is organized as follows. The overview of our 
proposed method is presented in Section 2. Section 3 
elaborates the experimental setup and the test results. We 
draw a conclusion in Section 4. 

 
2. PROPOSED METHOD 

 
In this section, the noisy speech is modeled as follows: 

n n n y x w                                  (1) 

yn, xn and wn denote the noisy speech, clean speech and noise 
signal, respectively. This section is divided into two parts. 
The first part denotes the procedure of estimating AR model 
parameters using DNN and the construction of AR-Wiener 
filter. The second part shows the details about speech-
presence probability. 

2.1. Estimation of AR model parameters with DNN 

In this section, the DNN is adopted as the mapping function 
from noisy features to the AR model parameters of speech 
and noise. Fig. 1 shows the block diagram of the proposed 
speech enhancement system. 
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Fig. 1 Block diagram of the proposed method 

In the training stage, we obtain noisy speech by combining 
clean speech and noise from their corpus frame by frame. The 
acoustic features are extracted from noisy speech and fed into 
the DNN along with the corresponding desired training target. 
Here, we use the log-power spectra (LPS) [11] as the acoustic 
features. The input of DNN combines the LPS of the current 
frame, five previous frames and five future frames. Thus, we 
combine the 11 frames of LPS vectors into one vector as the 
input of DNN: 

5 5 5 5 5
1 2 1 1[ , ,... ..., ,..., ,..., ,... ]l l l l l l l

m m mx x x x x x x               (2) 

where m denotes the dimension of one frame’s LPS and l 
denotes index of frame. This treatment considers the 
continuity of time and can improve the performance [15]. The 
training target is the connected vector that combines the 
linear spectrum frequency (LSF) [10] parameters of speech 
and noise: 

1 2 1[ , ,..., , ,..., ]x x x w w
n np p p p p                      (3) 

where 
௫  denotes the speech’s LSF parameters and 

௪ 
denotes the noise’s LSF parameters. n denotes the dimension 
of LSF parameters. In this way, the DNN can be trained to 
predict the LSF parameters of speech and noise 
simultaneously. The DNN has three hidden layers, each 
hidden layer has 512 rectified linear hidden units (Relu) [16]. 
Here, we use 10 order of LSF parameters of speech and noise 
(n=10). So the dimension of the output layer is 20. The cost 
function of the network is Euclidean distance: 
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x(i) is the ith input vector and y(i) is the ith expected output 
vector related to the training target. hv,b(·) denotes the whole 
DNN with the connection weights v and biases b. M is the 
total number of training vectors. The training algorithm we 
used is the stochastic gradient descent (SGD) [17] with the 
momentum: 
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      (5) 

where k is the index of training epochs. ߟ is the learning rate 
and α is the momentum. The momentum is set to 0.2 in the 
first 20 training epochs and is raised to 0.5 in the following 
training epochs. The learning rate is set to 0.03 in the first 
epoch and decayed by multiplying 0.98 in the following 
epochs. The SGD with momentum technique can avoid the 
problem falling in local optima. The dropout rate is set to 0.2, 
which can prevent the overfitting problem of the DNN [18].  

In the test stage, the acoustic features are extracted from 
noisy speech just like in the training stage. And the output of 
DNN is a vector that combines the LSF parameters of the 
estimated speech and noise. The former 10 dimensions of the 
output represents the estimated speech’s LSF parameters and 
the later 10 dimensions represents the noise’s LSF parameters 
just like in the Eq. (3). Then, we transform the LSF 
parameters to LPC parameters according to [19]. Thus, the 
spectral shape of speech, 1/|ܣ௫ሺ݇ሻ|ଶ , is calculated,  
where 
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ොܽ௫, is the mth dimension of estimated speech LPC parameter. 
K presents the Fast Fourier Transform (FFT) size. And the 
spectral shape of noise, 1/|ܣ௪ሺ݇ሻ| , is calculated in the same 
way. 

At last, the AR-Wiener filter is constructed as following 
equation: 

2 2 2
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                (7) 

ො݃௫ and ො݃௪ denote AR gains of speech and noise respectively, 
which are calculated by multiplicative update rule [9]: 
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In Eq. (10), ܲ௬  is the power spectrum of noisy speech. 
௫ܪ ௬ܪ ௪andܪ,  are the spectral shape of speech, noise and 
noisy speech, respectively. ௬ܹ is the AR gain of noisy speech. 
The symbol “•” represents the point-wise multiplication. 

2.2 Updated AR-Wiener filter using SPP 

The proposed method in previous section can track the rapid 
changing of noise energy, so it is very suitable to suppress the 
non-stationary noise. However, there are also residual noise 
between the harmonics because the above method is only 
used to model the spectrum shape but not the spectrum details. 
In this part, we estimate the speech-presence probability (SPP) 
[14], which is used to update the AR-Wiener filter above. 
This method can reduce the noise between the harmonics. 

For calculating SPP, ܪ
 denotes the state that speech is 

absent in frequency bin k, while ܪଵ
  denotes the speech is 

present. So, the SPP is calculated by ܲሺܪଵ
| ܻሻ : 
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            (16) 

where ܻ denotes the spectrum of noisy speech. Pሺܪଵ
ሻ is the 

prior probability of speech presence. For the state ܪ
, ܻ has 

the same spectrum as the noise’s spectrum ܦ. Because ܦ 

obeys the Gauss distribution with zero mean and ߣௗሺ݇ሻ 
variance, ܲሺ ܻ|ܪ

ሻ is the same: 
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 for the state ܪଵ
, ܻ ൌ ܦ  ܺ, where ܺ is the spectrum of 

clean speech. So, the ܲሺ ܻ|ܪଵ
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where ߣ௫ is the variance of speech power. Then, we put the 
Eq. (17) and Eq. (18) into Eq. (16), we can get the SPP as 
follows: 
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ݍ ൌ ܲሺܪ
ሻ. ߦ is priori SNR, ߛ is posteriori SNR:  
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௫ܲሺ݇ሻ and ௪ܲሺ݇ሻ are the power spectrum of speech and noise 
and can be calculated by the estimated AR-gains and spectral 
shape in the section 2.1. ො݃௫ and ො݃௪ are calculated according 
to the Eq. (8) and Eq. (9). ܣ௫ሺ݇ሻ is calculated according to 
the Eq. (6).  

To obtain the SPP, We first calculate the priori SNR and 
posteriori  SNR by the Eq. (21). And then we obtain the SPP 
according to Eq. (19). Finally, the AR-Wiener filter in 
Section 2.1 is updated by the SPP as follow: 

1
ˆ( ) ( | ) ( )k

updated k ARWF k P H Y WF k                (23) 

 ௨ௗ௧ௗሺ݇ሻ is the updated AR-Wiener filter. When theܨܹ 
frequency bin k is between adjacent harmonic frequencies, 
the power spectrum of noise is much larger than the power 
of speech. So the priori SNR is small, which leads to 
decline in SPP. In this way, the noise between harmonics 
is removed. 
 

3. EXPERIMENTS AND RESULT 
 
In this section, we compare our proposed method with three 
reference methods including DNN-based amplitude 
recovering [11], Sparse Hidden Markov Models method [8] 
and DNN-based ideal ratio mask (IRM) method [12]. For 
convenience, we name them as Ref. A, Ref. B and Ref. C, 
respectively. Our two proposed methods are named as Pro. A 
which is the AR-Wiener filtering without SPP and Pro. B 
which is AR-Wiener filtering with SPP. In our experiments, 
eight hours of training speech from TIMIT databases is used 
to train the DNN. The sampling rate is 8kHz. The input noisy 
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speech with the frame size 32ms is windowed using 
Hamming window with 50% overlap between the adjacent 
frames. The FFT size is 256. The training noises including 
babble, f16, factory and buccaneer come from Noisex-92 
database.  

In the training stage, input features (LPS) are extracted 
from noisy speech with -5dB, 0dB and 5dB signal-to-noise 
ratio (SNR). In the test stage, the test set contains ten male 
and ten female utterances from TIMIT database and are 
corrupted by four kinds of noise just as in training stage. We 
add noisy utterances in the test set with 10dB input SNR in 
order to test the generalization ability of network. The 
performance is evaluated by the segment SNR (SSNR) [20], 
the perceptual evaluation of speech quality (PESQ) [21], and 
the short-time objective intelligibility (STOI) [22]. Moreover, 
we also give the spectrum comparison of the enhanced speech. 

Table.1 Evaluation results of SSNR 

Enhancement 
methods 

Average SSNR Improvement 

-5dB 0dB 5dB 10dB 

Ref. A 12.0243 9.1580 6.3286 3.3413 

Ref. B 11.5093 9.1606 6.1674 5.8473 

Ref. C 10.7430 9.9106 8.7555 7.2213 

Pro. A 13.8090 12.3177 10.1973 7.4086 

Pro. B 14.1283 13.1526 11.6552 9.4908 

Table.2 Evaluation results of PESQ 

Enhancement 
methods 

Average PESQ 

-5dB 0dB 5dB 10dB 

Noisy 1.4180 1.6824 2.0107 2.3455 

Ref. A 1.3209 1.6338 2.0067 2.3140 

Ref. B 1.4120 1.8497 2.3050 2.6476 

Ref. C 1.5932 1.9532 2.3352 2.7484 

Pro. A 1.5819 1.9854 2.3414 2.6585 

Pro. B 1.6666 2.0452 2.3942 2.7318 

Table.3 Evaluation results of STOI 

Enhancement 
methods 

Average STOI 

-5dB 0dB 5dB 10dB 

Noisy 0.5148 0.6300 0.7453 0.8433 

Ref. A 0.5253 0.6381 0.7456 0.8158 

Ref. B 0.4981 0.6118 0.7211 0.8093 

Ref. C 0.5989 0.7119 0.8114 0.8876 

Pro. A 0.6114 0.7218 0.8298 0. 8829 

Pro. B 0.6312 0.7490 0.8351 0.8945 

From the Table 1-3, we can see that the Pro. A get more 
satisfactory results in each objective evaluation result 
comparing with Ref. A. By comparing Fig. 2 (f) with the Fig. 
2 (c), the Pro. A can preserve more components of speech’s 
spectrum while remove the background noise, which can get 
better quality in the enhanced speech. 

In the Fig. 2 (d), the Ref. B has less residual noise 
comparing with other methods, but meanwhile, the 
components of speech are also destroyed a lot. So the STOI 
score of the Ref. B is the lowest. 

The Ref. C is comparable with our proposed methods. In 
the -5dB, 0dB and 5dB noisy environments, our proposed 
methods outperform the Ref. C a little bit. But in the 10dB 
noisy environments, The Ref. C get the highest score in the 
PESQ and STOI. That is because the 10dB noisy speech is 
not in our training set, so the performance is not satisfactory. 

By comparing the Fig. 2 (g) and (f), we can see the Pro. 
B preserve more details than the Pro. A. In each objective test 
result, the Pro. B gets more satisfactory results than the Pro. 
A. It is mainly because that the SPP can remove the noise 
between harmonics to some extent. 

 
Fig. 2 Spectrum comparison, (a) clean speech; (b) noisy 

speech (f16 noise, input SNR=0dB); (c) Ref. A; (d) Ref. B; 
(e) Ref. C; (f)Pro. A (g)Pro. B 

4. CONCLUSIONS 
In this paper, the DNN is used to estimate the AR model 

parameters of speech and noise simultaneously, and the AR-
Wiener filter is constructed by the estimated AR model 
parameters. The speech-presence probability (SPP) is 
adopted to remove the residual noise between harmonics. The 
test results show that our proposed method gets satisfactory 
result comparing with other references. In the future work, 
we can try other input features and other network structure 
which can take into account the temporal  correlations. 
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