
EFFICIENT NON-CONVEX GRAPH CLUSTERING FOR BIG DATA

Naveed Naimipour* and Mojtaba Soltanalian

Department of Electrical and Computer Engineering
University of Illinois at Chicago

Chicago, Illinois

ABSTRACT
Big data analysis is a fundamental research topic with exten-
sive technical obstacles yet to be overcome. Graph clustering
has shown promise in addressing big data challenges by cat-
egorizing otherwise unlabeled data—thus giving them mean-
ing. In this paper, we propose a set of non-convex programs,
generally referred to as Hard and Soft Clustering programs,
that rely on matrix factorization formulations for enhanced
computational performance. Based on such formulations, we
devise clustering algorithms that allow for large data analysis
in a more efficient manner than traditional convex clustering
techniques. Numerical results confirm the usefulness of the
proposed algorithms for clustering purposes and reveal their
potential for usage in big data applications.

Index Terms— Big Data, Non-Convex Methods, Graph
Clustering, Soft/Hard Clustering, Matrix Factorization

1. INTRODUCTION

The collection of large data sets, also known as big data,
has become a focal point of the current technological land-
scape. Big data analysis refers to obtaining valuable infor-
mation from data sets which are immensely large, unorga-
nized, and difficult to process using traditional data mining
techniques, and has a wide range of applications including,
e.g., inference, prediction, communications, and imaging [1].
In recent years, the question of how to efficiently produce
such useful information has been explored. Graph cluster-
ing is a technique that has shown promise in structuring large
volumes of data in a reasonable amount of time.

Clustering, in its most general form, is the process of
identifying and categorizing large data from pre-existing un-
labeled data. Its immediate applications range from social
media sites (e.g. Facebook) to online shopping entities (e.g.
Amazon) [2]. Despite the existence of numerous clustering
methods, there is still no consensus regarding the most ef-
ficient algorithm. For instance, due to their simplicity, graph
clustering techniques such as K-means and spectral clustering
have been studied extensively [3]. However, such techniques

* Corresponding author (e-mail: nnaimi2@uic.edu). This work was sup-
ported in part by U.S. National Science Foundation Grant CCF-1704401.

have had numerous pitfalls (including a large computational
cost) that have prevented them from effectively overcoming
big data’s biggest obstacles.

A major challenge currently associated with convex clus-
tering algorithms is their poor ability to handle missing
data [4]. Powerful clustering algorithms need to have the
ability to work regardless of missing data, initializations, etc.
To combat such issues, hierarchical clustering techniques
have been devised to use non-convexity as a tool for data
analysis. However, such methods are not yet capable of per-
forming efficiently as abnormalities in data sets occur [5].
Moreover, techniques such as kernal-based methods have
been able to deal with missing data points, but have not been
able to do so consistently [6]. Alternatively, an approach that
has also seen some success in clustering relates to matrix
factorization. Specifically, low-dimensional representations
of high dimensional data have been analyzed and have shown
promise in terms of efficiency [7-9].

The purpose of this work is to approach graph clustering
through a non-convex methodology stemming from a matrix
factorization formulation. In particular, we propose two non-
convex clustering formulations, referred to as Hard Cluster-
ing and Soft Clustering programs. Based on such formula-
tions, we devise algorithms that allow the clusters of large
data sets to be computed more efficiently and consistently
when compared to traditional convex clustering techniques.
We then extend our results by proposing another set of pro-
grams called 2-Hard Clustering and 2-Soft Clustering that are
even more efficient than the original programs. This is fur-
ther illustrated through numerical simulations performed to
test the speed of each algorithm when compared to the im-
proved ALM algorithm proposed in [10-11].

The rest of this paper is organized as follows: Section 2
introduces the problem formulation and foundations of our
proposed clustering programs. This includes our proposed
non-convex programs and details regarding their character-
istics. Section 3 introduces the proposed algorithm derived
from our programs and an even faster set of programs based
on the original methods. Section 4 presents the numerical re-
sults, examining the efficiency of the proposed methods as
compared to those in [10-11]. Finally, we conclude with a
summary of the work and possible future research directions.

2896978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

2. PROBLEM FORMULATION

We begin with two definitions that distinguish between hard
and soft clustering, and as a result, laying the foundation for
most that follows.

Definition 1. Let B = {0, 1}. We call X 2 Bn⇥k a k-
clustering matrix if and only if each row of X has exactly
one 1. The subset of k-clustering matrices of Bn⇥k will be
denoted by Hn,k .

It should be noted that any X 2 Hn,k partitions the graph
nodes to at most k clusters. The number of clusters is given
by the number of nonzero columns of X.

Definition 2. We call X 2 Rn⇥k a soft k-clustering matrix if
and only if the elements of X are nonnegative and the sum of
the entries at each row is equal to one. The associated subset
of Rn⇥k will be denoted by ⌦n,k.

The matrix X 2 ⌦n,k encodes the probability of any
graph node to belong to any of the k clusters. Therefore,
⌦n,k is a more relaxed (or softer) version of Hn,k (as ⌦n,k ⇢
Hn,k) in which we are not forced to fully decide on the as-
signment of any node to any cluster. This may eliminate the
false decision errors associated with Hn,k.

2.1. Clustering Programs

Let A denote the adjacency matrix of the graph to be clus-
tered. Based on the above definitions, we propose the follow-
ing Hard and Soft Clustering programs,

(a) Hard Clustering:

min
X2Hn,k

kA�XXT kF , (1)

(b) Soft Clustering:

min
X2⌦n,k

kA�XXT kF . (2)

Observe that the choice of XXT is not arbitrary:

1. For X 2 Hn,k, the (l,m)-entry of XXT is one if and
only if both the nodes l and m occur in the same cluster.

2. For X 2 ⌦n,k, it can be easily verified that for any l 6=
m, the (l,m)-entry of XXT represents the probability
of the scenario in which both nodes occur in the same
cluster.

Alternatively, the clustering task can be accomplished via the
following over-parametrized almost-equivalent non-convex
programs,

(a) Hard Clustering:

min
X2Hn,k,Q2Rn⇥k

kXQ�A1/2kF s.t. QQT = Ik

(3)

(b) Soft Clustering:

min
X2⌦n,k,Q2Rn⇥k

kXQ�A1/2kF s.t. QQT = Ik

(4)

in which Q is a semi-unitary matrix since QTQ 6= In. The
above non-convex programs pave the way for an efficient
computational approach to the clustering problem at hand. It
is worth noting that the objectives in (1)-(2) become small
(or zero) if and only if the objectives in (3)-(4) become small
(or zero). Moreover, note that we can generally assume the
diagonal entries of the adjacency matrix A are one or large.
On the other hand, the diagonal entries of XXT in Soft Clus-
tering represent the squared l2-norms of rows of X. Observe
that for a vector with a fixed-sum of entries, the sparser the
vector, the larger its l2-norm. As a result, the minimization
of the Soft Clustering objectives encourages a sparse cluster-
ing—i.e. the node association probabilities will be distributed
as sparsely as possible, even without resorting to a sparsity
constraint.

3. PROPOSED ALGORITHMS

In the following, we show that the non-convex optimization
problems in (3)-(4) can be handled very efficiently using a
cyclic approach. For given X (in Hn,k or ⌦n,k) and n � k,
we have:

kXQ�A1/2k2F (5)

= tr
⇣
AT/2A1/2 +XQQTXT

⌘
� 2Re{tr{AT/2XQ}}

= C � kXTA1/2 �Qk2F
where C is a constant. Now, let XTA1/2 = V⌃UH repre-
sent the economy-size SVD of XTA1/2. Then, the minimizer
semi-unitary matrix Q of (5) is obtained as [12]

Q⇤ = UVH. (6)

In addition, for fixed Q, the optimal X of (3)-(4) is a nearest-
matrix problem aiming to minimize kX �A1/2 bQk2F , where
bQ is a unitary matrix formed by completing Q to serve as a
basis for the whole Rn. Note that:

1. If X⇤ 2 Hn,k, then the location of the largest entry in
any row of A1/2 bQ is the location of the single 1 entry
in the corresponding row in X⇤.

2. If X⇤ 2 ⌦n,k, then the optimal X = X⇤ can be ob-
tained in a row-wise manner (each independent from
other rows). For a generic row of A1/2 bQ, say ↵ 2 Rk,
we solve the following problem:

minp kp�↵k2
s.t. pl � 0 , l 2 {1, 2, ..., k},Pk

l=1 pl = 1,
(7)

2897

Take ↵ to ⌦+
k :

↵ ↵+
⇣

1�sum(↵)
k

⌘
1k .

If ↵ contains negative entries:
↵ ↵�min(↵)1k.

Main Step:

Let ↵̄ consist of the nonzero entries of ↵.

If (1� ↵̄)/length(↵̄) < min ↵̄:
↵̄ ↵̄�

⇣
1�sum(↵̄)
length(↵̄)

⌘
1length(↵̄).

[Done.]
Else,

↵̄ ↵̄�min(↵̄)1length(↵̄).

[Now we have even less nonzero values, and
can proceed by using the Main Step on
the newly obtained ↵.]

Algorithm 1: A recursive approach to find the closest prob-
ability vector to the given vector ↵.

which finds the closest probability vector to a given
vector in Rk.

Next, we show that (7) can be solved very efficiently using
a recursive procedure. To formulate the procedure, we first
define

⌦k = {↵ 2 Rk : ↵l � 0, ⌃k
l=1↵l = 1}, (8)

⌦+
k = {↵ 2 Rk : ↵l � 0, ⌃k

l=1↵l � 1}, (9)

and resort to the following lemmas to cast the recursions.

Lemma 1. Impact of identical additions:
argminp2⌦k

kp�↵k2 = argminp2⌦k
kp� (↵+ �1k)k2 .

Lemma 2. Suppose ↵ 2 ⌦+
k and

p⇤ = argmin
p2⌦k

kp�↵k2. (10)

If ↵l = 0 for any l 2 {1, 2, ..., k} then p⇤l = 0.

Lemma 3. If ↵ 2 ⌦k then ↵ = argminp2⌦k
kp� ↵k2.

The above claims are not difficult to verify and their
proofs are thus omitted for the sake of brevity. Based on the
above lemmas, we propose a set of steps, summarized in Al-
gorithm 1, that obtain the vector that is the closest probability
vector to the original ↵ in Rk. It is interesting to note that
the probability vectors obtained by Algorithm 1 are sparse
by construction, which is in agreement with our previous
discussions on the Soft Clustering programs.

3.1. Further Enhancement of Computational Efficiency

Further analysis of the Hard and Soft Clustering programs in-
dicates even higher efficiency with the use of A instead of
A1/2 in the formulations. Observe that if A is an adjacency
matrix that encodes information on paths of length 1, A2 re-
veals relevant information on paths of length 2. However, for
clustering purposes, we can assume that each cluster forms
a complete sub-graph. Hence, we can perform the clustering
based on the paths of length 2 that eliminate the need for com-
puting the square-root of A. More precisely, we can consider
the programs:

(a) 2-Hard Clustering:

min
X2Hn,k,Q2Cn⇥k

kXQ�AkF s.t. QQT = Ik, (11)

(b) 2-Soft Clustering:

min
X2⌦n,k,Q2Cn⇥k

kXQ�AkF s.t. QQT = Ik. (12)

As a final remark, the benefits of our methods in adaptive sce-
nario where we deal with an updated A should not be over-
looked. The proposed method will be very efficient in such
cases as minor modifications in A typically result in minor
modifications in the clustering outcome. Therefore, a fast
convergence will be achieved compared to methods that re-
quire full analysis of A, or finding the clusters from scratch.

4. NUMERICAL RESULTS

We begin the numerical results by investigating the ability of
the proposed methods to produce the correct clusters for dif-
ferent sizes of a (possibly noisy) adjacency matrix. Several
clustering examples are shown in Figs. 1-2. In particular, we
observed that Hard Clustering performs very well when the
noise power is low. On the other hand, Soft Clustering is gen-
erally more robust to strong noise. Furthermore, 2-Soft Clus-
tering was observed to be harder than Soft Clustering. Specif-
ically, 2-Soft Clustering typically obtained the exact cluster-
ing solution and worked better than 2-Hard Clustering.

With this general behavior in mind, we present hereafter
the numerical results assessing the speed of the proposed al-
gorithms compared to the improved ALM algorithm [10-11].
In each case, the completion time of the algorithms was plot-
ted with varying n while k was kept constant.

Fig. 3 shows the results of our analysis on Hard and Soft
Clustering for large matrices where the value of k is set as 8
and 16, respectively. It can be seen that Hard and Soft Cluster-
ing consistently outperform the improved ALM algorithm in
terms of computational cost. As the value of n increases, our
programs perform even better relative to the improved ALM

2898

A

200 400 600 800 1000

200

400

600

800

1000

True Clusters: 117 118 124 126 131 135 136 137

200 400 600 800 1000

200

400

600

800

1000

Soft Clustering: 77.7 100.0 103.5 109.7 132.1 142.3 174.0 184.7

200 400 600 800 1000

200

400

600

800

1000

Hard Clustering: 117 118 124 126 131 135 136 137

200 400 600 800 1000

200

400

600

800

1000

Fig. 1: Graph clustering completion via the Hard and Soft
Clustering formulations (n = 1024, k = 8). Hard Clustering

finds the clusters correctly in a low-noise scenario.

algorithm, which shows their potential for big data. As ex-
pected, the proposed Soft Clustering algorithm appears to be
slightly more costly than its Hard Clustering counterpart.

A similar numerical analysis was performed for the 2-
Hard and 2-Soft programs. It can be seen that both 2-Hard
and 2-Soft Clustering programs consistently outperform the
improved ALM algorithm by an even wider margin than our
original clustering programs. Once again, the potential for
applications in big data scenarios is evident.

5. CONCLUSION

Efficient processing and analysis of large data sets using clus-
tering algorithms is an ongoing research topic. Inspired by
matrix factorization formulations, we presented a set of non-
convex Hard and Soft Clustering programs (and their associ-
ated algorithms) that have shown great potential for big data
analysis. We further extended our formulations and intro-
duced another set of clustering programs called 2-Hard and
2-Soft Clustering, that were even faster than the original set
of suggested programs. The proposed methods were shown to
outperform the improved ALM algorithm by a wide margin in
terms of computational efficiency.

6. ACKNOWLEDGEMENT

The authors would like to thank Ramya Korlakai Vinayak and
Prof. Babak Hassibi from California Institute of Technology
for providing us with the MATLAB code for the improved
ALM algorithm, as well as useful discussions that helped us
significantly in clarifying the ideas of this work.

A

200 400 600 800 1000

200

400

600

800

1000

True Clusters: 119 119 120 123 125 131 140 147

200 400 600 800 1000

200

400

600

800

1000

2-Soft Clustering: 119 119 120 123 125 131 140 147

200 400 600 800 1000

200

400

600

800

1000

2-Hard Clustering: 0 119 120 123 125 131 147 259

200 400 600 800 1000

200

400

600

800

1000

Fig. 2: Graph clustering completion via the 2-Hard and
2-Soft Clustering formulations (n = 1024, k = 8). The

2-Soft Clustering approach correctly identifies the clusters.

n

0 2000 4000 6000 8000

ti
m

e
(s

ec
o

n
d

s)

0

100

200

300

400

500

600

700
Completion Time with Respect to n and k=8

ALM Improved

Hard Cluster

Soft Cluster

n

0 2000 4000 6000 8000

ti
m

e
(s

ec
o

n
d

s)

0

100

200

300

400

500

600

700
Completion Time with Respect to n and k=16

ALM Improved

Hard Cluster

Soft Cluster

Fig. 3: Completion time of Hard and Soft Clustering
methods with k 2 {8, 16}.

n ×104

0 0.5 1 1.5 2 2.5

ti
m

e
(s

ec
o

n
d

s)

0

100

200

300

400

500

600

700
Completion Time with Respect to n and k=8

ALM Improved

2-Hard Cluster

2-Soft Cluster

n ×104

0 1 2 3 4

ti
m

e
(s

ec
o

n
d

s)

0

100

200

300

400

500

600

700
Completion Time with Respect to n and k=16

ALM Improved

2-Hard Cluster

2-Soft Cluster

Fig. 4: Completion time of 2-Hard and 2-Soft Clustering
methods with k 2 {8, 16}.

2899

7. REFERENCES

[1] P. Zikopoulos, D. deRoos, and K. P. Corrigan, Harness
the Power of Big Data. New York: McGraw-Hill, 2012.

[2] Nina Mishra, Robert Schreiber, Isabelle Stanton, and
Robert Tarjan. “Clustering Social Networks,” Algorithms
and Models for the Web-Graph, volume 4863 of Lec-
ture Notes in Computer Science, chapter 5, pages 56-67.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[3] C. Boutsidis, A. Zouzias, M. Mahoney, and P. Drineas,
“Randomized dimensionality reduction for K-means
clustering,” Comput. Res. Repos., 2011.

[4] Yudong Chen, Sujay Sanghavi, and Huan Xu. “Clustering
sparse graphs.” NIPS, pages 2213-2221, 2012.

[5] J. H. Ward Jr, “Hierarchical grouping to optimize an ob-
jective function,” Journal of the American statistical as-
sociation, vol. 58, no. 301, pp. 236-244, 1963.

[6] R. J. Hathaway and J. C. Bezdek, “Fuzzy c-means cluster-
ing of incomplete data,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 31, no.
5, pp. 735-744, 2001.

[7] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Par-
rilo, and Alan S. Willsky, “Rank-sparsity incoherence for
matrix decomposition,” SIAM Journal on Optimization,
vol. 21, no. 2, pp. 572-596, 2011.

[8] L. De Lathauwer and J. Castaing, “Blind identification of
underdetermined mixtures by simultaneous matrix diago-
nalization,” IEEE Transactions on Signal Processing, vol.
56, no. 3, pp. 1096-1105, 2008.

[9] J. F. Tenenbaum, V. Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduc-
tion,” Science, vol. 290, no. 5500, pp. 2319-2323, 2000.

[10] R. K. Vinayak, S. Oymak, and B. Hassibi, “Graph clus-
tering with missing data: Convex algorithms and analy-
sis,” in Proc. 27th Adv. Neural Inf. Process. Syst., 2014,
pp. 2996-3004.

[11] R. K. Vinayak, S. Oymak and B. Hassibi, “Sharp perfor-
mance bounds for graph clustering via convex optimiza-
tion,” 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Florence, 2014,
pp. 8297-8301.

[12] P. Stoica, J. Li, X. Zhu, “Waveform synthesis for
diversity-based transmit beampattern design,” IEEE
Transactions on Signal Processing, vol. 56, no. 6, pp.
2593-2598, 2008.

2900

