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ABSTRACT

Multi-agent systems are being increasingly deployed in challeng-
ing environments for performing complex tasks such as multi-target
tracking, search-and-rescue, and intrusion detection. This paper for-
mulates the generic target tracking problem as a time-varying opti-
mization problem and puts forth an inexact online gradient descent
method for solving it sequentially. The performance of the proposed
algorithm is studied by characterizing its dynamic regret, a notion
common to the online learning literature. Building upon the existing
results, we provide improved regret rates that not only allow non-
strongly convex costs but also explicating the role of the cumula-
tive gradient error. The objective function is convex but the variable
belongs to a compact domain. The efficacy of the proposed inex-
act gradient framework is established on a multi-agent multi-target
tracking problem.

Index terms: Time varying optimization, stochastic optimiza-
tion, target tracking, gradient descent methods.

1. INTRODUCTION

Multi-agent systems are increasingly being used for challenging
tasks such as multi-target tracking [1, 2], planetary exploration and
mapping [3], search-and-rescue, and intrusion detection [4]. Achiev-
ing such team-based goals requires the robotic platforms to not only
sense and understand the environment, but also cooperate among
themselves through judicious data exchange and fusion. Conse-
quently, resource allocation and optimization becomes an important
aspect of the overall motion planning problem. Indeed, the recent
trend is to formulate target tracking as a constrained convex op-
timization problem that must be solved at every time step [5–9].
Such time-varying optimization problems have their origins in the
control theory literature, where they have been applied to path
planning [10] and dynamic parameter tracking problems [11, 12].
Given the limited computational and communications capabilities
of the mobile robots, solving the full per-time instant optimization
problem before taking the action may not necessarily be viable. In-
stead, recent works have advocated the use of simpler one-iteration
algorithms such as the online interior point, prediction-correction,
online ADMM, and gradient descent methods, that have been shown
to approach the optimal asymptotically. Leveraging the tools from
classical optimization theory, these dynamic optimization algo-
rithms not only admit low-complexity distributed implementations,
but are also amenable to analytical performance guarantees.

Online machine learning represents a parallel but closely related
development that has been widely applied to solve problems in Big
Data [13]. First proposed by [5], the online convex optimization
framework models the agents as learners and targets as adversaries.
Within this sequential learning paradigm, the learner performs an ac-
tion and the adversary reveals a corresponding loss function at each

time step. The eventual goal of the learner is to minimize the cumu-
lative loss. Recent year have witnessed the development of theoreti-
cal guarantees in form of dynamic regret, where the performance of
the learner is measured against that of an adaptive and time-varying
adversary [8, 14, 15].

1.1. Related work and contributions

Inexact gradient methods have been widely used to solve a vari-
ety of optimization problems, especially in the context of machine
learning [16, 17]. Since calculating an approximate gradient is of-
ten cheap, recent years have witnessed the development of several
variants, such as the incremental aggregated gradient method [18],
stochastic average gradient method [19], stochastic variance reduced
gradient method [20], SAGA [21]. For static optimization problems,
the inexact gradient methods are known to converge at a linear rate
even for non-strongly convex objectives [22], [23]. For time varying
optimization problem, dynamic regret was first introduced in [5].
As compared to the weaker notion of static regret, the idea here is
to compare the performance of the tracker against that of an adap-
tive and time-varying adversary [8, 9, 14]. Dynamic regret bounds
for the gradient descent and related first order methods have been
reported in [5,6,8,9,14,24,25]. As compared to existing results, the
bounds provided here are not only stronger but also require minimal
assumptions on the cost function.

This paper studies the multi-agent multi-target tracking prob-
lem from the lens of online convex optimization. Prompted by the
noisy and possibly incorrect target position information available to
the agents, we put forth the inexact online gradient descent (IOGD)
algorithm. The key theoretical contribution is the development of
improved dynamic regret bounds for non-strongly convex objective
functions. Improving the existing results for general convex prob-
lems, it is shown that the dynamic regret is bounded by the path
length of the target [See [26] for proofs]. Different from the existing
literature, we also explicate the dependence of the dynamic regret
bounds on the cumulative gradient errors, that are otherwise allowed
to be adversarial. Finally, the flexibility of the IOGD algorithm is
demonstrated by applying it to the multi-agent multi-target tracking
problem from [27].

2. PROBLEM FORMULATION

We consider the general problem of tracking a time-varying parame-
ter that evolves according to an unknown dynamic model. The gen-
eral setting considered here subsumes the target tracking applica-
tion of interest, where the parameter may represent the location(s)
of the target(s) being pursued by one or more agents. As motivated
in [8,15,28], the parameter at time k can be written as the solution of
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Table 1: Summary of related works on time-varying optimization (cf. Sec.3)

References Loss function Inexact Function Regret rate
[5] Convex No Deterministic O(

√
K(1 +WK))

[14] Convex No Stochastic O(K2/3(1 + VK)1/3)

[24] Convex No Deterministic O(
√
DK + 1 +min{

√
(DK + 1)WK , [(DK + 1)VKK]1/3})

[25] Convex No Stochastic O(
√
KW ′K)

[9] Convex+QG No Deterministic O(1 +W ′′K)
This work Convex (P2) Yes Deterministic/Stochastic (A1) O(1 +

√
KEK +WK)

This work Convex (P2) Yes Stochastic (A2) O(1 + EK +WK)

the following (discrete) time-varying convex optimization problem

x?k ∈ argmin
x∈X

fk(x) k = 1, 2, . . . (1)

where fk is a smooth convex function and X ⊂ Rn is a compact
convex set with diameter R. The set notation in (1) emphasizes
the fact that in general, the minimizer of fk may not necessarily
be unique. The parameter estimate at time k is denoted by xk. The
agents do not know the full functional form of fk but are only re-
vealed an inexact version of the gradient ∇̃f(xk) := ∇fk(xk)+ek
for some ek ∈ Rn. The agents make use of these inexact gradients
to improve their estimates of x?k in an online manner.

This paper considers the problem from an online convex opti-
mization perspective, viewing the agents as learners and targets as
adversaries. Specifically, at time k, the online learner selects an
action xk ∈ X and incurs a cost fk(xk), where fk : Rn → R
are smooth convex functions selected by the adversary. In response
to the agent’s action, the adversary also reveals an inexact gradient
∇̃fk(xk) to the learner. The goal of the learner is to minimize its
cumulative loss

∑K
k=1 fk(xk) over K time slots. Of particular in-

terest is to characterize the so-called dynamic regret of the learner,
that measures the cumulative mismatch between the learner’s action
and the optimal action [6, 8, 14]:

RegK :=

K∑
k=1

fk(xk)− fk(x?k) (2)

where x?k is as defined in (1). In order for the tracking to be suc-
cessful, the dynamic regret must be upper bounded by a sublinear
function of K.
2.1. Parameter variations and error bounds

It is well known that a sublinear dynamic regret may not always be
achievable, e.g., if the parameter variations or the gradient errors
are too large [9, 14]. The goal of the current paper will therefore
be to bound the dynamic regret using functions of the cumulative
parameter variations and errors. For the target tracking setting at
hand, it makes sense to characterize the parameter variations using
the path length, defined as

WK :=

K∑
k=2

‖x?k − x?k−1‖ (3)

for some sequence of parameter values {x?k}k≥1. More gener-
ally there exist a class of related complexity measures that can be
used to characterize the parameter variations [8].

The gradient errors ek can be modeled either as being deter-
ministic with bounded norms or stochastic with bounded variance.
Deterministic errors may be of interest in adversarial settings while
stochastic errors are useful for modeling communication and com-
putational noise. In order to unify the subsequent development, a

generic stochastic error model is considered that subsumes that de-
terministic case. Let Fk denote the sigma field generated by the
random sequence {eτ}k−1

τ=1. The following assumption bounds the
second moment of the error.
A1. Error bound: The stochastic sequence {ek}Kk=1 adheres to the
following bound on the second moment:

E
[
‖ek‖2 | Fk

]
≤ ε2k + ν2 ‖∇fk(xk)‖2 (4)

with εk ≤ ε <∞ for all k ≥ 1, and ν ≥ 0 and ε ≥ 0 are constants.
When the errors are deterministic, (4) is equivalent to a worst-

case bound on the error norm. In the general case, the goal will be to
establish the sublinearity of the expected dynamic regret E [RegK ].
The specific form of the bounds in (A1) is inspired from [29,30] and
allows for errors that are proportional to the gradient norm in addi-
tion to an additive term. It is remarked that from Jensen’s inequality,
(4) implies that E [‖ek‖ | Fk] ≤ εk + ν ‖∇fk(xk)‖. The required
dynamic regret bounds will be developed in terms of the path length
WK and the cumulative error bound EK :=

∑K
k=1 εk.

A particular case of interest is when the gradient errors constitute
a white noise process as specified in the following assumption.
A2. White noise: The zero-mean error sequence {ek}Kk=1 is inde-
pendent identically distributed, i.e.,

E [ek | Fk] = 0. (5)

Assumption (A2) may be applicable, for instance, when the gradient
errors arise from communication errors. The requirement in (5) is
more restrictive than that in (4), but also results in improved regret
bounds.

Remark 1. The path length definition used in (3) applies to an ar-
bitrary sequence of true parameter values {x?k} and does not depend
on X ?k . Consequently, the path length definition in (3) is stronger
than those used in [9,25]. In particular, the definitions in [9,25] take
the following form

W ′K := max
{uk∈X?

k
}K
k=2

K∑
k=2

‖uk − uk−1‖ (6)

W ′′K :=

K∑
k=2

max
u∈X?

k

‖Pk(u)− Pk−1(u)‖ , (7)

respectively, where Pk(u) := argminy∈X?
k
‖y − u‖. The use of

an arbitrary trajectory in (3) allows us handle such unbounded sets
while also ensuring that WK ≤ W ′K and WK ≤ W ′′K for problems
where X ?k is compact.

3. PROPOSED ALGORITHM AND ASSUMPTIONS

The online gradient descent algorithm has been widely used to solve
online learning problems owing to its flexibility and simplicity [5,6,
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8, 14, 24]. This work considers the inexact online gradient descent
(IOGD) method that takes the form:

xk+1 = PX [xk − α(∇fk(xk) + ek)] (8)

where PX (·) denotes the projection onto the set X . The IOGD
method has also been applied to static and online problems [22]. The
IOGD method is also closely related to the incremental and variance
reduced variants of the gradient descent algorithm. The full algo-
rithm is summarized in Algorithm 1.

Algorithm 1 IOGD: Inexact Online Gradient Descent

1: Initialize x1

2: for k = 1, 2, . . . do
3: Action xk
4: Observe inexact gradient∇fk(xk) + ek
5: Update xk+1 = PX [xk − α(∇fk(xk) + ek)]
6: end for

In addition to Assumptions (A1) and (A2) stated in Sec. 2, the
subsequent analysis will also require the following regularity condi-
tions.
A3. Lipschitz continuity: The function ∇fk is Lipschitz continuous
with parameter L:

‖∇fk(u)−∇fk(v)‖ ≤ L ‖u− v‖ (9)

for all k ≥ 1 and u, v ∈ X .
A4. Vanishing gradient: The optimum x?k lies in the relative interior
of the set X , that is,∇fk(x?k) = 0 for all x?k ∈ X ?k .
A5. Bounded Variation: For a given x?k, there exists some σ > 0
such that ‖x?k+1 − x?k‖ ≤ σ for all k ∈ N.

Of these, both (A3) and (A4) are standard and apply to large
class of online learning problems. Likewise, the requirement in (A5)
imposes a limit on the maximum velocity of the target and is there-
fore applicable to most target tracking problems. The bounded vari-
ation condition is also satisfied, for instance, if WK is sublinear or
linear and the target motion is not too ‘jumpy’.

4. REGRET BOUNDS

The results would be presented here for two specific scenarios,
namely (a) gradient errors following (A1) with ν = 0, and (b) gra-
dient errors following (A1)-(A2) but possibly non-zero value of ν.
We begin with stating the following intermediate lemma

Lemma 1. Under (A1) with ν = 0, (A3)-(A4), and for a sequence
{x?k} satisfying (3), the IOGD iterates satisfy

E [‖xk+1−x?k‖] ≤ E [‖xk−x?k‖]+
ξ

R
(E [fk(xk)−fk(x?k)]) + sk

where ξ := 1− 2α(1− 2αL) and sk :=
√

2α2ε2k + 2αεkR.

Lemma 1 leads directly to the required dynamic regret bounds
under (A1) with ν = 0. This lemma establishes that the distance of
next action xk+1 from the current optimal x?k is upper bounded by
the quantities calculated at current time k.

Theorem 1. Under (A1) with ν = 0, (A3)-(A4), and for a sequence
{x?k} satisfying (3), the IOGD iterates adhere to the following dy-
namic regret rate

E [RegK ] ≤ O(1 +
√
KEK +WK). (10)

This theorem establishes that the proposed algorithm provides
sublinear regret when EK and WK are sublinear. This results states
that the proposed algorithm will become exactly close to optimal so-
lution for large enough K. The results can be improved for the case
when the gradient errors follow a white noise process as provided in
following corollary.

Corollary 1. Under (A1)-(A4), and for a sequence {x?k} satisfying
(3), the IOGD iterates satisfy

E [‖xk+1−x?k‖]≤E [‖xk−x?k‖]+
ξ2
R
(E [fk(xk)−fk(x?k)])+εk

(11)

where ξ2 := 1 − 2α(1 − (1 + ν2)αL). For this case, the dynamic
regret is bounded as

E [RegK ] ≤ O(1 + EK +WK). (12)

It is remarked that there are various existing online algorithms
which can be obtained as special case of the proposed inexact online
gradient descent algorithm in this paper. For example, Incremental
OGD with increasing sample size, and Proximal OGD methods etc
(See [26] for details).

5. NUMERICAL TEST: MULTI-TARGET TRACKING

This section develops a low-complexity online multi-target tracking
algorithm inspired from the convex optimization-based target track-
ing framework developed in [1]. Specifically, a team of n agents at
locations {xik}ni=1 is tasked with tracking a set of m targets at loca-
tions {yjk}

m
j=1. The discretized problem is formulated as the follow-

ing convex optimization that must be solved for each k ≥ 1 [1, Thm.
3.8.1]:

{xik+1} =arg min
{xi∈Rp}

n∑
i=1

ψik(x
i) (13a)

s.t.
∥∥∥xi − xik

∥∥∥2 ≤ vi = 1, . . . , n (13b)
n∑
i=1

wijk

∥∥∥xi − yjk

∥∥∥2 ≤ ηj = 1, . . . ,m (13c)

where ψik(·) is a time-varying cost function and v is the square of
the maximum distance that an agent may cover within a single time
slot. For this paper, the following cost function is used:

ψik({xi}) =
1

2

∑
6̀=i

∥∥∥xi − x`
∥∥∥2 + γ

∥∥∥xi − xik

∥∥∥2 (14)

where γ > 0 is a regularization parameter. The objective function
encourages agent i to remain close to the other agents. At the same
time, the regularization term forces the agents to not move around
unnecessarily. The constraint in (13c) is the linearized version of the
original constraint obtained from using the process described in [1,
Chap. 3]. A sigmoidal weight function is utilized that takes the form:

wijk =
(
1 + e−ω(ε−‖x

i
k−y

j
k‖)
)−1

(15)

where ω and ε are positive parameters. Observe that the weights are
small for agent-target pairs that are far from each other. In other
words, the constraint in (13c) encourages the set of agents tracking
a target j to stay close to it. The weights are normalized so that∑n
i=1 w

ij
k = 1 in order to ensure that each target is tracked by at
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(a) Target tacking with m = 3 and n = 3 (Proposed algorithm).
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(b) Target tacking with m = 3 and n = 3 (algorithm in [27]).

Fig. 1: Real time target tracking with proposed algorithm and algorithm of [27].

least one agent. Finally, it is remarked that the agents may only
know the estimated target locations {ŷjk}

m
j=1 instead of the true lo-

cations required for (13c). Since the constrained optimization prob-
lem in (13) is not of the form required in (1), the IOGD algorithm
will instead be applied in the dual domain. It can be verified that
(13) satisfies the Slater’s conditions, and therefore has zero duality
gap. To this end, associate dual variables {λi}ni=1 and {νj}mj=1 with
(13b) and (13c), respectively. Collecting the primal and dual vari-
ables {λi}, {νj}, and {xi} into vectors λ, ν, and x respectively,
the Lagrangian can be written as

Lk(x,λ,ν) =

n∑
i=1

n∑
`=i+1

∥∥∥xi − x`
∥∥∥2 + γ ‖x− xk‖2 (16)

+

n∑
i=1

λi(
∥∥∥xi − xik

∥∥∥2 − v) + m∑
j=1

νj
[
n∑
i=1

wijk

∥∥∥xi − yjk

∥∥∥2 − η] .
Thus the dual function can be written as

%k(λ,ν) = argmin
x
Lk(x,λ,ν) (17)

Since the dual function is always concave, the proposed IOGD al-
gorithm can be utilized to maximize %k in an online fashion. Then
solving the dual problem using the proposed technique results in al-
gorithm 2.

Algorithm 2 IOGD-based multi-target tracking

1: Initialize x1, λ1, and ν1, and step sizes αλ, and αν
Repeat for k = 1, 2, . . . ,

2: Compute weights {wijk } from (15)
3: Calculate the next location as

xk+1 = argminx Lk(x,λk,νk)
4: Update for all agents and targets:

λik+1 =

[
λik − αλ(

∥∥∥xik+1 − xik

∥∥∥2 − v)]
+

(18)

νjk+1 =

[
νjk − αν(

n∑
i=1

wijk

∥∥∥xik+1 − ŷjk

∥∥∥2 − η)]
+

(19)

The performance of the proposed multi-target tracking algo-
rithm is studied on a number of simulated planar environments.
The agent velocities are restricted to 10m/s and a target is assumed
covered if it is within one meter from the agent. As a toy example,
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Fig. 2: Number of agents covering each target (m = 10, n = 50).

consider first a simple scenario consisting of three targets (m = 3)
and three agents n = 3. The targets are co-located at time k = 1 and
start moving away from each other along the paths shown in Fig.
1a. It can be seen that the proposed algorithm works as expected,
and the agent team splits up in order to track the three targets. On
the other hand, the algorithm in [27] does not necessarily exhibit
such a behavior and requires careful parameter tuning so as to allow
tracking with reasonable accuracy; see Fig. 1b. Indeed, since [27]
entailed solving a constrained convex optimization problem at ev-
ery time instant, it was observed that unless the parameters are not
selected carefully, the problem could become infeasible. It was
however possible to circumvent this behavior to a certain extent by
explicitly adding noise to the output of the optimization problem. In
contrast, no such issue was present in the proposed IOGD algorithm,
whose performance was quite robust to the choice of parameters.

Next, we consider a large scale system with m = 10 targets
and n = 50 agents. As expected, the IOGD algorithm is capable of
tracking most of the targets at low complexity. As with the smaller
system considered earlier, the splitting of the agent teams is observed
and is evident from the supplementary video included with this paper
1. It is important to emphasize that the tracking performance of the
IOGD is at par with the convex optimization approach of [27]. In
contrast, solving a general convex optimization problem as required
in [27] incurs a complexity of at leastO(n3) as opposed to theO(n)
complexity incurred in the calculation of the inexact gradient in (18)-
(19). For the sake of comparison, both algorithms were implemented
in MATLAB and their run-times measured on an Intel Xeon E3-
1226 3.30GHz CPU machine. The resulting per-iteration run-time
for the proposed algorithm was 49 ms, as compared to that of 974
ms required by [27].

1https://www.youtube.com/watch?v=bVto6LItehM
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