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Abstract—Quaternion adaptive line enhancer (QALE) has been
proposed recently for the recovery of two- (2-D) or three-
dimensional (3-D) periodic signals from their noisy mixtures
[1] with the help of quaternion-valued adaptive filtering theory.
Similar to the traditional 1-D [2] version, QALE, relies mainly on
the second order similarity between the signal and its delayed
version and is more effective when the signal is narrowband.
Here, quaternion-valued singular spectrum analysis (QSSA) [3]
is used to develop a robust 3-D ALE system where in the
reconstruction stage of QSSA the eigentriples are adaptively
selected (filtered) using the delayed version of the data. Unlike
the QALE where (second) order statistics are taken into account,
in the proposed QSSA-QALE the full eigen-spectrum of the
embedding matrix is exploited. Consequently, the system works
for non-Gaussian noise and wideband 3-D periodic signals. The
two systems have been implemented and their results compared.
It is shown that the QSSA-QALE significantly outperformed
QALE when the noise is not Gaussian.

Index Terms—Quaternion singular spectrum analysis, quater-
nion adaptive line enhancer, ALE, QSVD

I. INTRODUCTION

Most of natural signals and time series, which are often
noisy in nature, contain periodic or cyclostationary compo-
nents. Among them, those representing a kind of free move-
ment are multidimensional. As an example, the gait movement
trajectory recorded using a triaxial accelerometer is periodic or
quasiperiodic in 3-D space [4]. These signals are often buried
in noise or mixed with other periodic or aperiodic signals.
Extraction of such cyclic signal components is very important
for clinical or industrial assessment and monitoring.

The traditional adaptive line enhancer (ALE) was introduced
by Widrow et al. [2] and widely used for the separation of a
generally weak sinusoid, periodic, or narrowband signal from
strong broad-band noise. On the other hand, in [5] the ALE
has been improved using singular spectrum analysis SSA to
enable the use of ALE for the recovery of wideband periodic
signals corrupted with non-Gaussian noise.

In an ALE the input s(n) is assumed to be the sum of
a narrow-band signal x(n) and a broad-band signal v(n)
which is considered as noise. e(n) is the error signal between
s(n) and the estimated signal x̂(n). The vector of prediction
filter parameters w are iteratively and automatically adjusted
based on e(n) so that the statistical mean squared error
(MSE), E[e2(n)] is minimized, where E[·] stands for statistical
expectation.

In the case where the periodic data is 3-D, such as the
one in Fig. 1, successive application of 1-D ALE for each

Fig. 1: The noise free 3-D sinusoid; (left) its 3-D illustration and
(right) its variation along each axis.

Fig. 2: Block diagram of the QALE proposed in [1] .

dimension in 3-D space is not effective in general for the
recovery of such signals from their noisy versions as the signal
may not exhibit periodicity in any one of the three dimensions.
This can be seen in Fig. 1, where none of the components
of the 3-D signal in any one of the three dimensions is
periodic. The proposed algorithm in this article therefore,
aims at recovering a 3-D periodic wave by developing an
ALE which can operate in 3-D. For this purpose, recently,
a quaternion based ALE (QALE) algorithm was proposed to
restore narrowband 3-D periodic signals buried in Gaussian
noise [1]. The block diagram of a QALE is depicted in Fig. 2,
where xa(n) = [xT (n) xH(n)]T .

The QALE optimization is based on quaternion least mean
square (QLMS) stochastic gradient adaptive filtering designed
in [6] for filtering of hyper-complex processes. Such a sys-
tem can be applied to both circular and noncircular signals
and therefore, exploits the correlation between the real and
complex components of a quaternion-valued signal. Their
analysis has shown that for circular data in the quaternion
(Hamiltonian, H) domain the pseudocovariance E{xxT } does
not vanish as it does in the complex domain C.

Quaternions, used for more than 150 years (conceived by
Hamilton in 1843), can be regarded as a noncommutative
extension of complex numbers, and comprise of at most four
variables [7]. A quaternion variable q ∈ H which has a
real/scalar part R(q) (here, denoted by subscript a), and a
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vector part I(q) comprising of three imaginary parts (denoted
by subscripts b, c, and d), can be expressed as

q = [R(q), I(q)] = [qa,q] ∈ H
= [qa, (qb, qc, qd)]

= qa + ıqb + qc + κqd {qa, qb, qc, qd} ∈ R
(1)

where ı, , and κ are the orthogonal unit vectors and have
the properties ı = κ, κ = ı, κı = , and ıκ = ı2 =
2 = κ2 = −1. Quaternions have found applications in
computer graphics, for the modelling of three-dimensional (3-
D) rotations [8], in robotics [9], molecular modelling [10],
processing colour images [11], hyper-complex digital filters
[12], texture segmentation [13], source separation [14], wa-
termarking [15], spectrum estimation [16] quaternion singular
value decomposition and in the MUSIC algorithm to process
polarized waves [17], [18], quaternion least squares [10], [19],
quaternion singular spectrum analysis (QSSA) [3] and very
recently QALE [1]. In [6] the formulation for a quaternion
LMS adaptive filtering has also been provided and used for
the processing of quaternion valued signals.

The QALE however is most effective for restoration of
narrowband 3-D periodic signals (such as sinusoids) from
white Gaussian noise, as for the ALE of 1-D signals. To
extend this to the detection of wideband 3-D signals in a
process similar to that in [5], we combine QALE with QSSA
[3], both relying on augmented statistics. Original SSA is a
subspace based method for decomposition or prediction of 1-
D time series. QSSA extends the SSA to multidimensional
applications by exploiting the quaternion-valued statistics.

II. METHODOLOGY

A. QLMS and QALE

The conventional LMS algorithm minimises E[ee∗] where
e(n) = d(n)−wT (n)x(n), d(n) is the desired or target signal,
x(n) is the input signal, w(n) is the vector of filter parameters,
and (·)∗, (·)H , and (·)T refer to conjugate, conjugate transpose,
and transpose operations for a vector respectively.

In an ALE however, d(n) = x(n − ∆) as mentioned in
Section I and x(n) is a periodic noisy signal where the 1-D
time delay ∆ = mP , P is the signal period and m is an
integer. When the noise is white, m can be as small as unity.

In 3-D applications there is need for a quaternion delay
along the signal base-line trajectory. This is naturally a shift
equivalent to an integer multiple of the signal cycle period in
the 3-D space.

In our application the quaternion input signal is defined as

xq(n) = xa(n) + ıxb(n) + xc(n) + κxd(n) (2)

where xa(n), xb(n), xc(n), and xd(n) are the four signals in
four orthogonal directions. For a 3-D case, an example can be
the hand movement in the x-y-z coordinates.

In the augmented quaternion least mean square (QLMS)
proposed in [6] similar to original LMS, we have:

J(n) = e(n)e(n)∗ = e2
a(n) + e2

b(n) + e2
c(n) + e2

d(n) (3)

In order for the QLMS to cater for general quaternion pro-
cesses, a quaternion-valued semi-widely linear model can be
employed [20];

y(n) = wT (n)x(n) + gT (n)x(n) (4)

This model incorporates the information contained in both the
covariance, Cxx = E[xxH ], and pseudocovariance, Pxx =
E[xxT ]. According to [6], using QLMS the unified update
equation is derived as:

ha(n+ 1) = ha(n) + µ[2ea(n)xa∗(n)− xa∗(n)ea∗(n)] (5)

where
ha(n) = [wT (n) gT (n)]T (6)

where the augmented error is given by

ea(n) = d(n)− haT (n)xa(n) (7)

and

xa(n) = xas(n) + va(n) (8)

is the augmented input noisy signal and the target signal for
the QLMS filter, is a quaternion shift of the input signal i.e.

d(n) = ra(n) = xa(n−∆q) (9)

vice versa. Therefore, the output ya(n) = x̂as(n) is an
estimation of the noise free signal xas(n).

Although in some cases such a 3-D shift, ∆q , for at least
one signal cycle is practically easy to obtain, such as those for
a prescribed hand movement trajectory in an action research
arm test (ARAT) [21], [22], in general, the problem is solved
by estimating the 3-D shift ∆q through the following simple
optimization:

∆̂q = max
∆q

〈
xa(n)xa(n−∆q)

〉
(10)

where
〈

.
〉

refers to temporal cross-correlation.

B. Augmented QSSA

The basic quaternion trajectory matrix X ∈ HL×K can
be generated through exploitation of augmented statistics as
shown in Algorithm 1. Unlike real-valued SSA in which
the covariance is generated as E{XXT }, for AQSSA the
basic trajectory matrix incorporates information augmented
by all three quaternion involutions to generate the augmented
trajectory matrix Xa ∈ H4L×K as:

Xa = [XT ,XiT ,XjT ,XkT ]T (11)

where XαT , α ∈ {i, j, k}, is the transpose of α-involution
operation of the trajectory matrix W. The generated Xa is
then used to compute the new augmented covariance matrix
Ca ∈ H4L×4L.

Ca = E{XaXaH}

=


CXX CXi CXj CXk

CH
Xi CXiXi CXiXj CXiXk

CH
Xj CXjXi CXjXj CXjXk

CH
Xk CXkXi CXkXj CXkXk

 (12)
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Algorithm 1 AQSSA algorithm
Decomposition

x = [x1, . . . , xN ] ∈ H

X =


x1 x2 x3 ... xK
x2 x3 x4 ... xK+1

...
...

...
. . .

...
xL xL+1 xL+2 ... xN

 ∈ HL×K

Xa = [XT ,XiT ,XjT ,XkT ]T ∈ H4L×K

Ca = E{XaXaH} as in equation (12)
⇓ Quaternion SVD

Xa = UΛ1/2VH

Xa =

r∑
j=1

Xa
j =

r∑
j=1

√
λjujv

H
j

where r = max{j : λj > 0}

Reconstruction

X̂a
g =

∑
j∈Sg

Xa
j =


f̂11 f̂12 . . . f̂1,K

f̂21 f̂22 . . . f̂2,K+1

...
...

. . .
...

f̂L,1 f̂L,L+1 . . . f̂L,N



x̂1 = f̂11

x̂2 = (f̂12 + f̂21)/2

x̂3 = (f̂13 + f̂22 + f̂31)/3

· · ·

where CXX is the standard covariance matrix and the matrices
CXi , CXj , and CXk are the complementary matrices. Thus,
Ca captures the complete second order information. The steps
of AQSSA are summarised in Algorithm 1 [3].

In the reconstruction stage, similar to the real-valued SSA,
one of the main challenges is to find Sg , the group of the
eigentriples for reconstructing the component of interest. The
subspaces are generally characterised by various statistical
or physical constraints based on some desired properties. In
this work we aim to extract and restore the desired signal
components assuming that the original source is periodic and
its frequency components fall within a limited range.

III. QSSA-BASED QALE

The QSSA described in Algorithm 1 is used to develop
a new QALE. The new QSSA-based QALE is depicted in
Fig. 3. In this system the eigentriples of the QSSA are
adaptively selected in a way to minimise the error between
the reconstructed signal using QSSA and the delayed version
of the original signal.

Unlike the QALE recently introduced in [1] in which the
least mean square (LMS) error between the original signal and
its delayed version is minimized, here the QSSA allows for
filtering the signal before comparison and therefore makes the

Fig. 3: Block diagram of the prposed QSSA based QALE.

operation less sensitive to noise and its type. In this method
the augmented diagonal matrix of parameters Wa is applied
to the augmented eigenvalue matrix Λa in order to select the
correct eigenvalues adaptively:

J(Wa) = ||Ra −UaWaΛa 1
2 VaH ||2F (13)

where Ra is the augmented covariance matrix of the signal
of interest and ||.||F denotes Frobenius norm. Ua, Λa, (is a
matrix of eigenvalues) and Va are the augmented quaternion
SVD factors [17], as shown in Algorithm 1, and Wa is a
4l × 4l diagonal matrix of adaptive weights wij and has the
same size as Λa. In principle, an augmented gradient descent
optimization approach similar to the augmented quaternion
LMS as described before, can be followed to iteratively
estimate Wa;

Wa
k+1 = Wa

k − µUaΛa 1
2 VaH(Ra −UaWa

kΛ
a 1

2 VaH)H

(14)

where µ is the iteration step size (which is usually set manually
but can be reduced or adapted after each iteration). In the
reconstruction process, Wa is multiplied by Λa 1

2 and the
desired signal is recovered during the SSA reconstruction
process.

IV. EXPERIMENT

The performance of QSSA-QALE was assessed for the
synthetic signal shown in Fig. 4. This signal is constructed by
adding white Gaussian 3-D noise to the signal in Fig. 1. This
signal was created through applying the following equations:

x = sin(αn)cos(6βn) + Γx(n)

y = sin(αn)sin(6βn) + Γy(n)

z = γ[n+ sin(
n

3
)] + Γz(n)

where Γ(n) is the white Gaussian noise with different noise
levels. We also examined both systems for non-Gaussian
(heavy-tailed Laplacian) noise to enable comparison between
QALE and SSA-QALE. The constants α, β, and γ can be
changed; in this application they are set respectively to 3,
0.02, and 1. The target signal is also another later segment of
the same signal with an interval ∆q (equivalent to an integer
number of signal cycles) which has been shifted forward along
the 3-D direction. It is evident that with the added noise the
signal in 3-D is not recognisable. In Figs. 7 and 8 the results of
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Fig. 4: The noisy 3-D sinusoid; (left) its 3-D illustration and (right)
its variation along each axis; Gaussian noise with SNR=5 dB.

Fig. 5: The result of applying the proposed QSSA-QALE to the 3-D
signal of Fig. 4 and its comparison with the noise-free signals of Fig.
2; (left) 3-D illustration and (right) variation along each axis.

QALE and QSSA-QALE are demonstrated for Non-Gaussian
noises. In our attempt, we considered that the baseline of
movement and the sample directions were known a priori,
so, the 3-D shift could be performed accurately. Observe that
the noise effect in obscuring the signals is clearer in the 3-
D cases than their 1-D counterparts. Certainly, by applying
the traditional ALE successively to each of the x, y, and z
dimensions, no conclusive result is expected. This is because,
in general, the 3-D periodic signals are not necessarily periodic
in any of the above directions.
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Fig. 6: The original noisy sinusoid with non-Gaussian (Laplacian)
noise and SNR=5 dB.
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Fig. 7: The 3-D result of applying the QALE to the simulated signals.
Here, non-Gaussian (Laplacian) noise with SNR=5 dB has been used.

Fig. 8: The 3-D result of applying the proposed QSSA-based QALE
to the simulated signals. Here, non-Gaussian noise with SNR=5 dB
has been used.

By decreasing the signal-to-noise ratio (SNR), the perfor-
mance of the algorithm deteriorates. The performance was
evaluated in terms of mean square error (MSE) defined as:

MSE =
‖xas(n)− x̂as(n)‖2

‖xas(n)‖2
(15)

where ‖ · ‖2 refers to Euclidean norm and each term can be
expanded to sum square of its quaternion components, e.g.

‖xas(n)‖2 = ‖xasa(n)‖2 + ‖xasb(n)‖2 + ‖xasc(n)‖2 (16)

The results of both QSSA-based QALE and QALEare depicted
in Fig. 9. Evidently, the new approach in this paper signifi-
cantly outperforms QALE when the noise is non-Gaussian.

V. CONCLUSIONS

A novel quaternion-valued adaptive line enhancer based on
augmented QSSA has been proposed to cater for the recovery
of 3-D periodic signals from their noisy counterparts particu-
larly for non-Gaussian noise scenario. The results demonstrate
that the proposed QSSA-QALE is more effective for 3-D
signals compared to QALE recently proposed. In the design of
proposed QALE we used the QLMS algorithm. For rigour, the
performance of the algorithm has been evaluated in terms of
MSE and compared with that of the original QALE, which
uses QLMS and follows the traditional 1-D ALE design.
There are many applications in nature for this technique. One
example can be the recovery of hand tremor moving freely in
an unconstrained 3-D motion.
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Fig. 9: Comparison between the performances of QALE and QSSA-
QALE both w.r.t Gaussian as well as non-Gaussian (Laplacian)
noises.

2879



REFERENCES

[1] S. Sanei, C. C. Took, E. Shirin, and T. K. M. Lee, “Quaternion adaptive
line enhancer,” in European Signal Processing Conference, EUSIPCO,
vol. 1, 2017, pp. 2694–2698.

[2] B. Widrow, J. R. Glover Jr, J. M. McCool, J. Kaunitz, C. S. Williams,
R. H. Hearn, J. R. Zeidler, E. Dong Jr, and R. C. Goodlin, “Adaptive
noise cancelling: Principles and applications,” Proceedings of the IEEE,
vol. 63, no. 12, pp. 1692–1716, 1975.

[3] S. Enshaeifar, S. Kouchaki, C. C. Took, and S. Sanei, “Quaternion
singular spectrum analysis of electroencephalogram with application in
sleep analysis,” IEEE Transactions on Neural Systems & Rehabilitation
Engineering, 2015.

[4] S. Sanei and H. Hassani, Singular spectrum analysis of biomedical
signals. CRC Press, 2015.

[5] S. Sanei, T. K. Lee, and V. Abolghasemi, “A new adaptive line enhancer
based on singular spectrum analysis,” IEEE Transactions on Biomedical
Engineering, vol. 59, no. 2, pp. 428–434, 2012.

[6] C. C. Took and D. P. Mandic, “The quaternion lms algorithm for
adaptive filtering of hypercomplex processes,” IEEE Transactions on
Signal Processing, vol. 57, no. 4, pp. 1316–1327, 2009.

[7] W. R. Hamilton, Elements of quaternions. 2nd ed. London, U.K.:
Longmans, Green, & Company, 1899.

[8] S. B. Choe and J. J. Faraway, “Modeling head and hand orientation
during motion using quaternions,” SAE Technical Paper, Tech. Rep.,
2004.

[9] D. Biamino, G. Cannata, M. Maggiali, and A. Piazza, “Mac-eye: A
tendon driven fully embedded robot eye,” in IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2005, pp. 62–67.

[10] C. F. Karney, “Quaternions in molecular modeling,” Journal of Molec-
ular Graphics and Modelling, vol. 25, no. 5, pp. 595–604, 2007.

[11] S.-C. Pei and C.-M. Cheng, “Color image processing by using binary
quaternion-moment-preserving thresholding technique,” IEEE Transac-
tions on Image Processing, vol. 8, no. 5, pp. 614–628, 1999.

[12] H. Toyoshima, “Computationally efficient implementation of hypercom-
plex digital filters,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 3. IEEE, 1998, pp. 1761–
1764.

[13] T. Bulow and G. Sommer, “Hypercomplex signals-a novel extension of
the analytic signal to the multidimensional case,” IEEE Transactions on
Signal Processing, vol. 49, no. 11, pp. 2844–2852, 2001.

[14] V. Zarzoso and A. K. Nandi, “Closed-form semi-blind separation of three
sources from three real-valued instantaneous linear mixtures via quater-
nions,” in IEEE Symposium on Signal Processing and its Applications,
vol. 1. IEEE, 2001, pp. 1–4.

[15] P. Bas, N. Le Bihan, and J.-M. Chassery, “Color image watermarking
using quaternion fourier transform,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3. IEEE,
2003, pp. III–521.

[16] S. Said, N. Le Bihan, and S. J. Sangwine, “Fast complexified quaternion
fourier transform,” IEEE Transactions on Signal Processing, vol. 56,
no. 4, pp. 1522–1531, 2008.

[17] N. Le Bihan and J. Mars, “Singular value decomposition of quaternion
matrices: a new tool for vector-sensor signal processing,” Signal pro-
cessing, vol. 84, no. 7, pp. 1177–1199, 2004.

[18] S. Miron, N. Le Bihan, and J. Mars, “Quaternion-music for vector-sensor
array processing,” IEEE Transactions on Signal Processing, vol. 54,
no. 4, pp. 1218–1229, 2006.

[19] T. Jiang and L. Chen, “Algebraic algorithms for least squares problem in
quaternionic quantum theory,” Computer Physics Communications, vol.
176, no. 7, pp. 481–485, 2007.

[20] B. Picinbono and P. Bondon, “Second-order statistics of complex
signals,” IEEE Transactions on Signal Processing, vol. 45, no. 2, pp.
411–420, 1997.

[21] T. K. Lee, M. Belkhatir, and S. Sanei, “A comprehensive review of past
and present vision-based techniques for gait recognition,” Multimedia
Tools and Applications, vol. 72, no. 3, pp. 2833–2869, 2014.

[22] T. K. Lee, J. S. Lim, S. Sanei, and S. W. Gan, “Advances on singular
spectrum analysis of rehabilitative assessment data,” Medical Imaging
and Health Informatics, vol. 5, no. 2, pp. 352–358, 2015.

2880


