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ABSTRACT

We propose a novel latent variable model for learning latent bases for
time-varying non-negative data. Our model uses a mixture multino-
mial as the likelihood function and proposes a Dirichlet distribution
with dynamic parameters as a prior, which we call the dynamic Dirich-
let prior. An expectation maximization (EM) algorithm is developed
for estimating the parameters of the proposed model. Furthermore,
we connect our proposed dynamic Dirichlet latent variable model
(dynamic DLVM) to the two popular latent basis learning methods
- probabilistic latent component analysis (PLCA) and non-negative
matrix factorization (NMF). We show that (i) PLCA is a special case
of the dynamic DLVM, and (ii) dynamic DLVM can be interpreted as
a dynamic version of NMF. The effectiveness of the proposed model
is demonstrated through extensive experiments on speaker source
separation, and speech-noise separation. In both cases, our method
performs better than relevant and competitive baselines. For speaker
separation, dynamic DLVM shows 1.38 dB improvement in terms
of source to interference ratio, and 1 dB improvement in source to
artifact ratio.

Index Terms— Latent variable model, Dirichlet distribution,
non-negative matrix factorization, source separation

1. INTRODUCTION

Modeling time-varying, non-negative data is critical for many signal
processing problems. One such important problem is audio source
separation, where time varying, non-negative data arise in the form of
magnitude spectra [1]. Source separation is a long standing problem
in signal processing, which has widespread applications in speaker
recognition, speech enhancement, music editing and audio informa-
tion retrieval [2, 3].

This paper addresses the problem of modeling time varying non-
negative data, looking particularly at the problem of supervised source
separation. In the case of supervised source separation, we assume the
availability of training data for each source [1, 4]. The training data is
used to learn the underlying building blocks i.e., the latent bases for
each source. These latent bases are later used to separate the sources
from the mixture. Two techniques that have been prominent in this
field for learning latent bases are: latent variable model (LVM) [4]
and non-negative matrix factorization (NMF) [5, 6]. One of the most
popular LVM methods is the probabilistic latent component analysis
(PLCA), which has widespread application in acoustic modeling [1].
NMF, on the other hand, is a non-probabilistic approach to learn latent
basis with extensive applications to text, image and audio analysis.
For certain cost functions, LVM is known to converge to NMF [7],
and can be thought of as the probabilistic counterpart of NMF.

The LVM and the NMF in their basic forms do not take into
account the temporal correlation in the data. However, many signals,
such as music and speech exhibit strong temporal dependence. To
address this issue, dynamic variants of LVM and NMF have been
developed [8, 9, 10]. Most of these dynamic models capture the

temporal dependence in data by imposing temporal constraints on the
latent bases and their coefficients [8, 9]. A dynamic variant of PLCA,
called the Convolutive PLCA (CPLCA) [8], was proposed to capture
the temporal structure in data by assuming the likelihood to be a
convolutive mixture. Another dynamic version of PLCA involves
dynamic filtering and smoothing, where the coefficient matrix was
smoothened by using a vector autoregression (VAR) method [11].
A recent work developed a dynamic NMF (an extension of PLCA)
by using an exponential prior [10]. Apart from the LVMs and NMF
methods, the hidden Markov model (HMM) has also been extended
to model temporal non-negative data [12].

In this paper, we present a novel dynamic LVM for learning latent
bases for time varying, non-negative data. Our model uses a mixture
multinomial as the likelihood function, and proposes to use a Dirich-
let distribution with dynamic parameters as a prior (referred to as the
dynamic Dirichlet prior). The mixture multinomial likelihood func-
tion is chosen because it is known to yield superior results in source
separation and topic modeling [13, 14]. The Dirichlet distribution is
the conjugate of multinomial, and has been successfully used (without
dynamic properties) as a prior in text modeling [13]. We propose a dy-
namic variant of the Dirichlet prior in this work, which is particularly
suitable for non-negative data. We develop an expectation maximiza-
tion (EM) algorithm for the proposed model, and derive a maximum a
posteriori (MAP) estimate of the parameters. This leads to simple and
intuitive update equations due to multinomial-Dirichlet conjugacy.
We refer our model as the dynamic Dirichlet latent variable model
(dynamic DLVM) in the rest of the paper. Furthermore, we show that
(i) the PLCA model is a special case of the dynamic DLVM, and (ii)
our model is also a dynamic version of NMF. The effectiveness of
the dynamic DLVM is demonstrated through extensive experiments
on speaker source separation and speech-noise separation using the
SPIB [15] and the TIMIT database [16]. In all cases, our method
performs better than several relevant existing methods.

2. PROPOSED DYNAMIC DIRICHLET LATENT
VARIABLE MODEL

Let us consider a time varying signal x(t). We represent x(t) spec-
trographically by taking its short time Fourier transform (STFT), and
retaining its scaled magnitude spectrogram N

N = γ|STFT (x(t))| = γX (1)

where, X is magnitude spectrogram, γ is a large integer which en-
sures that all the elements in N are integers [1]. The observation
spectral data matrix N can be seen as count data, where Nft ∈ N
corresponds to the count of frequency f , at a time instant t. Each
column of the matrix N thus corresponds to the spectral distribution
at each time instant. With each frequency count f ∈ 1, 2, ...F , we
associate an unknown latent variable z of dimension K with one of
the entries as 1 and rest as zero, z = [z1, z2, ....zK ]. zk acts as an
indicator for the k-th latent basis, which is described by a spectral
distribution P (f |zk).
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Fig. 1: Plate notation for the proposed dynamic DLVM.

Latent variable models assume that the underlying cause of an
observed variable f , is a set of unobserved latent variables zk, 1 ≤
k ≤ K. Marginalizing over the latent bases z, the spectrogram at
each time instant t, is a mixture of K hidden distributions, where K
is a known positive integer

Pt(f) =

K∑
k=1

Pt(f, zk) =

K∑
k=1

Pt(zk)P (f |zk) (2)

where, Pt(f) is the probability of frequency f at time instant t,
P (f |zk) is a multinomial distribution similar to PLCA [1] and the
coefficients of mixtures are Pt(zk). Let us now define a state of the
data matrix N at time t as st as follows:

st = [Pt(z1), ..., Pt(zK)]T = [st(1), st(2)..., st(K)]T (3)

We impose a Markovian dependence between states, which uses a
Dirichlet distribution. This is described below in detail.

2.1. Dynamic DLVM

We propose to model the temporal dependence between states using
a Dirichlet distribution with time varying parameters

P (st|st−1,D) = Dir(αt−1D st−1 + 1) (4)

where, αt =
∑
f

Nft, P (s1) = Dir(1)

Here, “Dir” denotes the Dirichlet distribution [17], 1 is an all-one
vector, αt is the total number of observations at time instant t, and
D is a temporal dependence matrix. For simplicity, we assume
D to be a diagonal matrix with Dkk = dk, 1 ≤ k ≤ K, where
dk ∈ R+ denotes the temporal dependence between two consecutive
time instants for the k-th latent basis. Let us now define pseudo-
observation from the previous time instant for each basis k as mtk =
αt−1dkst−1(k). Therefore Eq. (4) can be rewritten as follows:

P (st|st−1,D) =
Γ(

∑
k(mtk + 1))∏

k Γ(mtk + 1))

∏
k

st(k)mtk

where, Γ is the gamma function. Note that the the hyperparameters
of the Dirichlet distribution are dynamic, hence, we refer to it as the
dynamic Dirichlet distribution in the rest of this paper. The proposed
dynamic Dirichlet distribution prior has several appealing properties
with intuitive understanding: (i) The generative process (with mixture
multinomial as likelihood) allows us to view the spectrogram at time
t as observed count data over K bases. Static models such as PLCA
uses this observation data to estimate the states at each time instant.
The dynamic Dirichlet prior allows us to have mtk extra pseudo-
observations for each basis k (see Eq. (8)), which is the result of

multinomial-Dirichlet conjugacy. (ii) The mode of the distribution
lies at the normalized pseudo-observations

Pmax(st(k)|st−1) =
dkst−1(k)∑
k dkst−1(k)

(iii) The variance of each entry of the vector st can be obtained from
the properties of Dirichlet distribution [17]

V ar(st(k)|st−1) ∝ 1

(
∑

k mtk +K)2(
∑

k mtk +K + 1)

which decreases as total number of observations at previous time
instant increases. It is also intuitive, since we expect the distribution
to have less variance when we have more prior information from
previous time instant. Thus dynamic DLVM assumes the following
generative process of the spectrogram N :
• Choose a state, st ∼ Dir(αt−1Dst−1 + 1)
• Sample frequency f , αt times as follows:

– Choose a latent basis zi ∼ Mult(st)

– Choose a frequency f ∼ Mult(P (f |zi)).

• Repeat the above process T times
where, T is the total number of time instants, “Mult” denotes the
multinomial distribution. Fig. 1 presents the graphical model for the
generative process.

2.2. PLCA as a special case of dynamic DLVM

The relationship between the proposed dynamic DLVM and the well
known PLCA [1] model is noteworthy. When the temporal depen-
dence matrix D is reduced to a zero matrix, the distribution in Eq. (4)
becomes a symmetric Dirichlet distribution Dir(1). Note that the
symmetric Dirichlet distribution Dir(1) is nothing but a uniform dis-
tribution, and thus the formulation is equivalent to a static PLCA [18].
This can also be intuitively understood as a fact that in the absence of
prior information, there exists no preference of any state over others.

3. PARAMETER ESTIMATION

In this section, we describe the parameter estimation steps for the
proposed dynamic DLVM. We obtain point estimates for st by per-
forming a maximum a posteriori (MAP) estimate.

3.1. Expectation step
The posterior distribution of the latent variable z is given by

Pt(zk|f) =
Pt(zk)P (f |zk)∑
k Pt(zk)P (f |zk)

(5)

3.2. Maximization step

Let us denote the state matrix S = [s1, s2, .....st]. Let β=
{P (f |z),D}. We want to maximize the following MAP objec-
tive function

LMAP = E
Pt(z|f)

(logP (N,S|β)) = E
Pt(z|f)

logP (N|S, β) + logP (S|β)

s.t.,
∑
f

P (f |zk) = 1,
∑
k

st(k) = 1, 0 < dk

(6)

The objective function LMAP is concave with respect to each param-
eters (S, P (f |z),D) when others are fixed1. Therefore, we update
the parameters in an alternating fashion [19].

1Our proof of concavity: https://tinyurl.com/y7qclrc6
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Update of P (f |z)

Maximizing the above constrained expected log-likelihood in Eq. (6)
with respect to P (f |zk) yields the following

P (f |zk) =

∑
t NftPt(zk|f)∑

f

∑
t NftPt(zk|f)

(7)

Update of S
Similarly, maximizing w.r.t. st(k), while keeping D fixed yields

st(k) =

∑
f NftPt(zk|f) + mtk∑

k(
∑

f NftPt(zk|f) + mtk)
(8)

Update of D

Let us define d = [d1, ...., dK ]T. Maximizing LMAP w.r.t. d,
keeping S fixed does not have a closed form solution

d = argmax
d

T∑
t=2

(log Γ(
∑
k

(mtk + 1))−
∑
k

log Γ(mtk + 1)

+
∑
k

mtk log(st(k)) s.t., 0 < dk. (9)

However, the maximizing function is concave since the Dirichlet
distribution is a member of the exponential family1. Therefore the
local minimum of the function is also a global minimum, which can
be obtained via gradient ascent

∂LMAP

∂dk
=

T∑
t=2

αt−1st−1(k)(ψ(
∑
i

mti +K)−

ψ(mtk + 1) + log(st(k)).

where, ψ is the di-gamma function. It is to be noted that updates of
P (f |z) and S are independent of scaling factor γ. Therefore, we
will replace N with X in all the update equations. The complete
algorithm is presented in the next section.

4. DYNAMIC DLVM AS DYNAMIC NMF

The proposed dynamic DLVM learns the latent bases and the states for
a data matrix via factorization in Eq. (2). Multiplying both sides of the
equation by αt, we rewrite Eq. (2) in matrix form as vt = Wstαt,
where, W is a matrix whose columns are latent bases P (f |z), vt is
the observation vector at time instant t. Concatenating observation
vector for all time instants, we can write the observed data matrix
X as XF×T = WF×KSK×TGT×T = WF×KHK×T where,
W is basis matrix, S is a state matrix and G is a diagonal matrix
with αt as the diagonal elements. Therefore, we can view dynamic
DLVM as a dynamic NMF with the iterative updates for W and S
(see Algorithm 1). The novelty of dynamic DLVM lies in the way
S is constrained. The columns of S are assumed to be realization
from dynamic Dirichlet distribution. In the algorithm, outer loop
corresponds to the EM iteration, while the inner loop corresponds to
the block-wise update of variables in the maximization step of the
EM algorithm.

5. APPLICATION TO SOURCE SEPARATION
We demonstrate the effectiveness of the proposed dynamic DLVM
through its ability to perform supervised source separation. We
first learn the basis matrix W for each source, and then separate
the sources by employing a standard source separation algorithm
following an earlier work [4]. Note that we only use the latent bases

Algorithm 1 Dynamic DLVM as Dynamic NMF
Input: X
Output: W,S,d
Randomly initialize W,S,d

while Not converged do

Wfk = Wfk

∑
t

Xft

(WS)ft
Skt

Wfk = Wfk/
∑
k

Wfk

while Not converged do

mtk = αt−1dkst−1(k)

Skt = Skt

∑
f

Wfk
Xft

(WS)ft
+ mtk

Skt = Skt/
∑
t

Skt

Update d using Eq. 9

end
end

(and not the dependency matrix D) during the source separation.
We perform two types of source separation experiments: (i) speaker
source separation, where mixtures contain speech sources from two
speakers, and (ii) noise-source separation, where mixtures contain
speech and noise.

Experimental details
We follow an experimental setup similar to that described in past
works on source separation using PLCA and its variants [20, 21]. The
source separation experiments use samples from the TIMIT database
[16], and noise data from SPIB [15]. The magnitude spectrograms
are obtained by performing STFT on a 64ms window with 16ms
overlap. We learn K = 30 latent basis in each case, and use the
maximum number of iterations (250 for outer loop, 8 for inner loop)
as the convergence criterion for Algorithm 1.

To evaluate the performance on source separation, we use four
evaluation metrics: signal-to-noise ratio improvement (SNRI) [22],
source-to-distortion ratio (SDR), source-to-interference ratio (SIR),
and source-to-artifact ratio (SAR) [23, 24, 25]. The later three met-
rics measure perceptual quality of the separated sources. The SNR
improvement (SNRI) of a speaker is calculated by incorporating the
phase information and by comparing the improvement in SNR with
that of the mixture signal as defined in literature [22, 4].

Speaker source separation

Following the experimental set up of the past literature [20, 21], we
have used ∼ 25 seconds of speech (8 to 9 sentences) from 10 speak-
ers (5 male, 5 female) in the database for our experiments. To model
each speaker (source), the first ∼ 17 seconds of the speech is used.
The remaining 5 to 7 seconds of speech were used to create 45 syn-
thetic mixtures by adding the speech from two speakers. The speech
signals were normalized to zero mean and unit variance prior to addi-
tion. Source separation experiments were performed on 45 mixtures
using the proposed dynamic DLVM. Fig. 2 presents a qualitative
result of source separation. Fig. 2b and Fig. 2c present the recon-
structed spectrograms of a given source recovered from a mixture
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Fig. 2: (a) Original source, (b) recovered source using PLCA, and (c)
recovered source using dynamic DLVM.
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Fig. 3: Results on speaker separation: Dynamic DLVM compared
with three existing techniques in terms of four evaluation metrics.

using PLCA and dynamic DLVM. Notice that the dynamic DLVM
recovers a smoother spectrogram (areas of significant differences are
highlighted). The performance of dynamic DLVM is evaluated in
terms of the four evaluation metrics mentioned earlier (see Fig. 3).
The performance of dynamic DLVM is compared against those of
three baseline methods – PLCA [1], PLCA with dynamic filtering
[11] and PLCA with dynamic smoothing [11]. Dynamic DLVM per-
forms better than or comparable to the baseline methods in terms of
all evaluation metrics. Our model outperforms PLCA by 0.96 dB in
SNRI, 0.87 db in SDR, 1.38 db in SIR, and 0.46 db in SAR. The
improvement in terms of SAR implies that the artifacts introduced
by dynamic DLVM is lesser than the other models. Usually, there is
a trade-off between removing noise (measured by SDR and SNRI)
and introducing artifacts (measured by SAR). The existing dynamic
models [11, 10, 26, 12] while improving SDR often introduce arti-
facts, which leads to a degraded SAR. However, the proposed model
shows simultaneous improvement in SDR and SAR. This indicates an
overall better modeling ability of dynamic DLVM, and consequently,
a better source separation.

Speech and noise separation

We consider a speech denoising scenario where prior information
about the noise types and the associated training data is available.
Both the noise and the speech are first normalized to have zero mean
and unit variance. The noisy mixtures were obtained by adding noise
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Fig. 4: Original source (left); recovered source using PLCA (center)
and dynamic DLVM (right) from a noisy signal.

Table 1: Comparison of different methods for noise separation
Average SNRI

Babble Factory White Pink Cockpit
PLCA [1] 5.63 2.60 5.07 2.04 2.78

Dynamic filtering [11] 4.93 2.87 5.83 2.06 2.70
Dynamic smoothing [11] 4.30 2.99 5.36 2.14 2.38

Dynamic DLVM 5.83 5.30 3.90 4.60 3.03
Average SAR

PLCA [1] 6.69 8.14 8.30 7.82 7.84
Dynamic filtering [11] 6.44 7.73 5.25 5.97 4.36

Dynamic smoothing [11] 5.65 7.73 3.98 7.44 3.21
Dynamic DLVM 7.22 8.75 9.92 8.66 9.13

(one at a time) to each speaker signal, resulting into a signal to noise
ratio of 0 dB. We experiment with five noise types: babble, factory,
white, pink and cockpit [15], and speech from 10 speakers used in the
speaker source separation experiments. The latent bases are learned
for each speaker and noise from their respective training data (same
parameter values as before). Fig. 5 presents a sample qualitative result
of denoising a source corrupted with babble noise. The performance
of dynamic DLVM averaged over 10 mixtures is listed in Table 1, and
compared with the baselines. Dynamic DLVM, on average, shows
an improvement of 0.9 dB. Note that it performs better than other
methods for all noise types, except white noise. This can be explained
by the fact that white noise is stationary and has no temporal structure.
Nevertheless, for non-stationary noise, the proposed model is able
to learn the temporal dependencies in data/noise, which results in
better separation. As observed earlier, dynamic DLVM shows 1dB
SAR improvement for all noise types as compared to PLCA. This
observation supports our earlier claim that our model introduces less
artifacts compared to other dynamic models in literature [11].

6. CONCLUSION

We proposed a latent variable model, called the dynamic DLVM, for
modeling time varying non-negative data. We introduced a new prior
(dynamic Dirichlet distribution) and used a multinomial as likelihood
for this model. An EM algorithm was proposed accordingly for
parameter estimation. We showed that the popular PLCA model
is a special case of our model. A major contribution of this paper
is to introduce this dynamic Dirichlet prior for non-negative data.
The existing dynamic variant of Dirichlet can not be used under
non-negativity constraints as it yields negative updates. Due to the
proposed dynamic Dirichlet prior, the dynamic DLVM transforms
to a dynamic version of NMF. Unlike other dynamic latent variable
models, our model does not require any free parameter (except the
number of latent bases). Although this work involves modeling
magnitude spectra, the proposed model is generic and suitable for
modeling other types of non-negative data, for example, word count
data that appears widely in natural language processing.
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