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ABSTRACT

In this paper, as a novel approach, we learn Markov chain
transition probabilities for ranking of multi-attribute data
from the inherent structures in the data itself. The procedure
is inspired by consensus clustering and exploits a suitable
form of the PageRank algorithm. This is very much in
the spirit of the original PageRank utilizing the hyperlink
structure to learn such probabilities. As opposed to existing
approaches for ranking multi-attribute data, our method is
not dependent on tuning of critical user-specified parameters.
Experiments show the benefits of the proposed method.

Index Terms— Ranking, multi-attribute data, transition
probabilities, similarity measure, parameter free

1. INTRODUCTION

In data analysis, ranking is a procedure where we seek a nat-
ural order of the data points. Ranking is relevant e.g. for
web pages [1, 2], images [3], text documents [4], and gen-
eral information networks [5]. Some methods for ranking
multi-attribute data exist [6, 7]. However, these methods have
severe shortcomings. They depend heavily on sensitive and
user-specified parameters and are computing transition prob-
abilities via similarities between multi-attribute data points to
be ranked in a static and unflexible way.

In this paper, we take a completely different approach. In-
spired by the vast success of ensemble learning [8, 9, 10, 11],
we propose to truly learn Markov chain transition probabil-
ities from the data itself, by examining the data in an iter-
ative clustering procedure over a wide range of resolutions
or scales. Learning similarities from the data itself is very
much in the same spirit as the original formulation of the
PageRank [1], where transition probabilities were effectively
learned from the hyperlink structure of the internet. Our novel
procedure requires no tuning of critical hyperparameters, and
is shown in experiments to perform very well compared to
alternatives on a range of problems.
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2. BACKGROUND ON THE PERSONALIZED
PAGERANK

The Personalized PageRank (PPR) is a variant of the PageR-
ank algorithm [1], which enables personalization to queries.
Chung and Zhao derived a variant of the PPR to be used as a
mathematical framework for studying relationships between
the PPR and various graph invariants [12]. In this work, we
exploit this formulation of the PPR since we recognize it as
especially suitable for ranking of multi-attribute data given a
symmetric similarity measure. Combined with our method
for learning similarities between data points, and hence tran-
sition probabilities as explained below (see Sec. 3), this leads
to a novel approach for ranking multi-attribute data.

Consider the difference equation

rTk+1 = (1− α)rTkP+ αsT , (1)

where P is a right stochastic matrix, 0 < α < 1 is the restart
probability and s = {si}N×1,

∑N
i=1 si = 1 is the seed dis-

tribution. This difference equation converges to the stationary
distribution of the Markov chain associated with the transi-
tion probability matrix P′ = (1− α)P+ α1sT . By defining
P = D−1K, where D = diag(di), di =

∑N
j=1 kij and

K = {kij}N×N is a symmetric similarity matrix with posi-
tive elements representing a connected graph, one can show
that the difference equation in (1) converges to

π(α, s) = βDGβs. (2)

Here, β = α
1−α and Gβ is the inverse of the β-adjusted Lapla-

cian Lβ = βD+ L, where L = D−K.

3. RANKING USING TRANSITION PROBABILITIES
LEARNED FROM DATA

A highly novel aspect of this paper is to learn the transi-
tion probabilities for ranking of multi-attribute data in a near
fully automated way, without the selection of critical hyper-
parameters, such as the width when using the fixed RBF ker-
nel [6, 13]. This reflects in a sense the original PageRank for
ranking web-pages, where transition probabilities were effec-
tively learned from the link structure.
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Inspired by consensus clustering [14], we learn the simi-
larity matrix KL for building PL such that the similarity mea-
sure adapts to the inherent structures in the data, both on local
and global scales. This is achieved by fitting Gaussian mix-
ture models (GMMs) to the data over a range of resolutions
g = 2, 3, . . . G (number of mixture components), providing
both a local and a global view of the data. This is done for
q = 1, 2, . . . , Q initial conditions. Using the EM-algorithm
[15], the posterior distribution γi(q, g) of data point xi is
computed. Then, the learned similarity matrix is defined as

KL(xi,xj) =
1

Z

Q∑
q=1

G∑
g=2

γi(q, g)
Tγj(q, g), (3)

where Z is a normalizing constant. This matrix is inspired
by [16], where hard cluster memberships were used for semi-
supervised learning, and is also referred to as the probabilistic
cluster kernel (PCK) [17]. Here, it is for the first time used for
ranking.

An important motivation for proposing such a similarity
measure to learn transition probabilities for ranking is the
novel interpretation we present next in this paper, which adds
interpretability to the general framework.

3.1. Relating the learned similarity matrix to consensus
clustering

Assume that the number of mixture components, G, and the
initial condition Q is independently drawn from the distribu-
tions P (G) and P (Q). Let Yi = y if data point xi is drawn
from mixture component y. Then

γi(q, g) =
(
PYi=1|q,g PYi=2|q,g · · · PYi=g−1|q,g

)T
,

where, PYi=y|q,g = P (Yi = y|Q = q,G = g). This is
justified since we implicitly condition on the initial condition
and the number of mixture components when calculating the
parameters in the GMM. Assuming that xi and xj are drawn
independently from the mixture components1, we get

γi(q, g)
Tγj(q, g) =

g−1∑
y=1

PYi=y|q,gPYj=y|q,g = PYi=Yj |q,g.

Furthermore,

P (Yi = Yj) =
Q∑
q=1

PqPYi=Yj |q =

Q∑
q=1

G∑
g=2

PqPgPYi=Yj |q,g

=

Q∑
q=1

G∑
g=2

PqPgγi(q, g)
Tγj(q, g).

1This assumption is satisfied on the off-diagonal elements of KL.

Assuming that Q and G are uniformly distributed such that
PqPg =

1
Q(G−1) yields

P (Yi = Yj) =
1

Q(G− 1)

Q∑
q=1

G∑
g=2

γi(q, g)
Tγj(q, g)

= KL(xi,xj)

(4)

using the normalization constant Z = 1
Q(G−1) . Thus, each

element of KL calculates the probability that two data points
are drawn from the same mixture component, i.e. the prob-
ability that two data points belonging to the same cluster.
From this, we define our learned transition probabilities as
PL = D−1KL.

Calculating PL includes estimating covariance matrices
and inverting them. For high dimensional data (d > N ), we
recommend using an SVD to reduce the dimensionality of the
data to avoid singular covariance matrices.

One should notice that each run of the EM-algorithm is
calculated independently of the others. Thus, Eq. (3) can be
computed in parallel. Note furthermore that the only parame-
ters in this procedure are G and Q. The exact choice of these
parameters are however not critical for the performance as
long as sufficiently high values are used, since KL adapts to
the structures in the data set on both local scales (largeG) and
global scales (smallG). In experiments not shown here due to
space limitations, we have varied Q and G over a wide range
of values, showing no significant difference for Q,G >≈ 20.
Thus, in all experiments and for all different data sets used in
this paper, we fix Q = G = 20.

3.2. Ranking algorithm

The algorithm for ranking multivariate data using KL is as
follows:

1. Construct the learned similarity matrix KL using (3).

2. Sort the weights between pairwise nodes in descend-
ing order. Create a graph by connecting pairwise nodes
from the sorted list successively until the graph is con-
nected (see [6]). Connectivity in the graph can be veri-
fied by e.g. a depth-first search [18]. The main diagonal
is set to zero.

3. Rank the data by using the PPR according to (2).

Similar approaches have been used for other similarity mea-
sures (see e.g. [6]).

4. EXPERIMENTS

In the following experiments, we validate the performance of
ranking using the learned similarity matrix. We compute the
Area Under the Curve (AUC) of the Receiver Operator Char-
acteristics (ROC) curve for data with known labels, as done
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in [6]. This is computed by using the scores for a given query
as a probability of data points belonging to the positive class
for a given query. The query is always sampled from the pos-
itive class. For data with group structures, but without known
labels, we generate labels by cluster analysis.

We compare our new method with the state-of-the-art al-
gorithm ranking on data manifolds [6], which uses an RBF as
the similarity measure. The RBF is defined as

KRBF(xi,xj) = e−
1

2σ2
‖xi−xj‖2 .

The RBF examines the data on one scale of resolution only,
determined by σ, which significantly affects results. To show
that our KL is extremely robust, we fix Q = G = 20 for
all experiments. Note that since ranking is an unsupervised
learning problem, the width parameter σ of the RBF has to be
pre-computed according to some criterion. In this paper we
follow the widespread practice of setting σ equal to 15% of
the median pairwise distances in the data set (see e.g. [19]).
The restart probability is set to α = 0.15, supposedly the
same value used by Google for web page ranking [1].

4.1. Synthetic data

In our first experiment, the aim is to illustrate that the learned
transition probabilities capture nonlinear and complex struc-
ture in the data. Towards this end, we study Jain’s synthetic
so-called two moon data set [8], as shown in Fig. 1a. The data
set contains two classes, separable by a non-linear boundary.

Fig. 1b shows the ROC curves for KL (blue) and the RBF
(green) for a single query. The learned similarity matrix out-
performs the RBF with an AUC of 1.0 and 0.60, respectively.
A visualization of the ranking results is shown in Fig. 1c for
KL and Fig. 1d for the RBF. The size of the circles represents
the ranking score for the data point. The query is represented
by a red cross. From these plots, we see that ranking based
on KL is able to follow the structure of the data within the
classes, with the result that every data point from the positive
class have a larger ranking score than the data points from
the negative class. The RBF however cannot capture such
structure leading to data points close to the query but in the
negative class having larger ranking scores than distant data
points in the positive class. This illustrates the benefits of
learning similarities from the inherent structures of the data,
as opposed to the non-adaptive RBF.

4.2. Text document ranking

In this experiment, we rank documents from a subset of 1000
documents from the 20-newsgroups data set2. Fig. 2a shows
the AUC obtained from 100 random queries in in this data set
when using KL versus an RBF. The gray line indicates equal
performance. With a mean AUC of 0.70 for KL and 0.53 for

2http://www.cs.nyu.edu/r̃oweis/data/20news w100.mat
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Fig. 1: (a): Jain’s two moon data set. (b): ROC Curve when
using KL (blue) and an RBF (green). (c)–(d): Plot of the
two moon data set with ranking results for KL ((c)) and an
RBF ((d)). The size of the circles represent the score from the
ranking. The red cross represents the query. We see that KL

is more capable of following the structure within the class of
the query.

the RBF, KL performs better overall than the RBF. This is
easily seen in the figure, where most of the points are above
the gray line.

Fig. 2b and Fig. 2c shows an embedding of the data using
t-SNE [20]. The colors represents the ground truth classes,
while the size of the dots represents the score for a query given
by the red cross. In the plot for KL, we see that the main mass
of high score documents comes from the dark blue class. In
the RBF plot, we have a mix of classes in the highly ranked
documents. The highest ranked document is from the yellow
class. Further inspection shows that the query document is a
member of the dark blue class, indicating that KL is in fact
able to encode similarities much better than the RBF, and in a
meaningfull manner.

Tab. 1 shows the words in the top ranked documents from
a query document with the words {data, display, email}. Blue
words are from KL (top), while red words are from an RBF
(bottom). From this, it seems like KL might be able to capture
the semantics of the documents, while the RBF only considers
distance between documents.

4.3. Image ranking

In this experiment, we rank 1000 images from the Frey Face
data set. Although there are no ground truth labels for this
data set, previous work have shown that there are group struc-
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Fig. 2: Results for the 20 newsgroups data set. (a): Scatterplot of the AUC for the newsgroups data set when using KL versus
an RBF with 100 random queries. The grey line represents equal performance for both. (b)–(c): t-SNE of the data set for a
random query with colors according to the ground truth. The red cross represents the query document, which is from the dark
blue class.

Table 1: Words in the top ranked documents with the query
document {data, display, email}. Blue words are from KL

(top), while red words are from an RBF (bottom).

1. program, software, system, university, version, windows
data, display

2. data, files, memory, program, system, win, windows
display, help

3. system, win, windows
display, problem

4. disk, files, help, program, version
display, help, windows

5. help, problem, question, win, windows
data
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Fig. 3: Results for the Frey Face experiment. (a): Scatter-
plot of the AUC for the Frey Face data set. (b)–(c): Example
ranking for KL ((b)) and an RBF ((c)).

tures in the data [19]. Thus, to have something to compare
the algorithm with, we cluster the data using k-means with 3
clusters, the same number of clusters used in [19], and use the
cluster labels as an estimate for ground truth. The results are
shown in Fig. 3

Fig. 3a shows the AUC obtained when using KL versus
an RBF from 100 random queries with an average AUC of
0.92 and 0.76 for KL and the RBF, respectively. We see that,
except for a few queries, the AUC obtained when using KL

is larger than when using an RBF.
Fig. 3b and Fig. 3c shows the list for a random query for

KL and an RBF respectively. The query is shown as the top
left image. In the beginning of the list, the two similarity
measures seem to behave similarly. Later in the list, KL is
more consistent and seems to traverse along some manifold
from one facial expression to another. With the RBF, the lat-
ter part of the list seems to contain a mix of different facial
expressions.

5. CONCLUSION

In this paper, we have proposed a similarity measure for rank-
ing multi-attribute data that is robust and does not need pa-
rameter tuning. When coupling this with ranking methods
based on Markov chains, this similarity measure is effectively
used to learn Markov chain transition probabilities from data.
In the experiments, we have shown its robustness by letting
all parameters be fixed over a range of data sets. The exper-
iments have shown superior results, compared to a standard
RBF.

Note that even though we have used the personalized
PageRank in this paper, this similarity measure can be used
with any ranking algorithm that assumes a symmetric simi-
larity measure.
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and G. Camps-Valls, “Spectral clustering with the prob-
abilistic cluster kernel,” Neurocomputing, vol. 149, Part
C, no. 0, pp. 1299–1304, 2015.

[18] R. Sendgewick, Algorithms in C++ Part 5: Graph Al-
gorithms, Addison–Wesley Professional, 3th edition,
2002.

[19] R. Jenssen, “Kernel Entropy Component Analysis,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 32, no. 5, pp. 847–860, 2010.

[20] L. van der Maaten and G. Hinton, “Visualizing data
using t-sne,” Journal of Machine Learning Research,
vol. 9, no. Nov, pp. 2579–2605, 2008.

2855


