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ABSTRACT
We present an exact analytic expression of the contributions of

the kernel principal components to the relevant information in a non-
linear regression problem. A related study has been presented by
Braun, Buhmann, and Müller in 2008, where an upper bound of the
contributions was given for a general supervised learning problem
but with “uncentered” kernel PCAs. Our analysis clarifies that the
relevant information of a kernel regression under explicit centering
operation is contained in a finite number of leading kernel principal
components, as in the “uncentered” kernel-PCA case, if the kernel
matches the underlying nonlinear function so that the eigenvalues
of the centered kernel matrix decay quickly. We compare the re-
gression performances of the least-square-based methods with the
centered and uncentered kernel PCAs by simulations.

Index Terms— nonlinear regression, kernel PCA, reproducing
kernel Hilbert space, spectral decomposition

1. INTRODUCTION

Kernel principal component analysis (PCA) [1] is a nonlinear tech-
nique to find the principal components in a so-called feature space
to which the sample vectors are mapped “nonlinearly” with a repro-
ducing kernel. It can be used for dimensionality reduction, noise
reduction, pre-processing of classification/regression/clustering, etc.
(see, e.g., [2]). Although kernel PCA only looks at the samples, it
is actually relevant to a task (a supervised learning problem such
as classification/regression). This has been shown theoretically by
Braun, Buhmann, and Müller [3]. More specifically, it has been
shown that the relevant information about the task is typically con-
tained in the subspace generated by a small number of leading ker-
nel PCA components. Here, the relevant information is a noise-free
version of the output (label) vector. The derivation therein is rather
complicated since the integral operator associated with the repro-
ducing kernel is considered first and its spectral decomposition is
then truncated to attain a bound. This makes the analysis applica-
ble only to an “uncentered” kernel PCA. We break this limitation
in this paper. Uncentered (linear) PCAs have been used in different
fields such as climatology [4], neuroimaging data [5], microarrays
[6], among many others. Its use in reduced-rank signal processing
has been studied, e.g., by Scharf [7]. Cadima and Jolliffe have stud-
ied the relationships between uncentered and centered (i.e., standard)
PCAs, in particular the relationships between the eigenvalues of the
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two PCA variants [8]. However, the relationships between uncen-
tered and centered (linear/kernel) PCAs have not been well studied
in the context of regression.

In this paper, we focus on a nonlinear regression problem, and
study how much the eigenfunctions of the covariance operator of
kernel feature vectors contribute to the relevant information. Here,
the contribution of an eigenfunction is the quantity of which an upper
bound has been given in [3, 9] for an uncentered kernel PCA. We
present its exact analytic expression (instead of its bound) for both
centered and uncentered kernel PCAs. The contribution essentially
decays at the same rate as the eigenvalues. A numerical example
shows that the centered and uncentered kernel PCAs have a similar
tendency in test-error-decay characteristics.

2. CONTRIBUTIONS OF PRINCIPAL EIGENVECTORS IN
LINEAR REGRESSION

In this section, we discuss the linear PCA of which the results are
useful to discuss kernel PCA. Let {xi}ni=1 be a set of n sample vec-
tors xi ∈ R

N . We consider a simple linear regression model

yi := xT
i w + εi, i = 1, 2, · · · , n, (1)

where w ∈ R
N is the regression vector, εi is the zero-mean additive

noise, and yi is the output corresponding to the sample vector xi

((·)T stands for transposition). The regression model in (1) can be
written in a vector form as

y := [y1, y2, · · · , yn]T = XTw + ε, (2)

where X := [x1 x2 · · ·xn] ∈ R
N×n and ε := [ε1, ε2, · · · , εn]T.

Define the relevant information vector [3]

g := [g1, g2, · · · , gn] := [E(y1|x1), E(y2|x2), · · · , E(yn|xn)]
T,

(3)

which is a noise-free version of y. In the present regression case, it
holds that

y = g + ε. (4)

Given any closed linear subspace S of an arbitrary real Hilbert space
X , we denote by PS the orthogonal projection operator onto S that
maps any point x ∈ X to its closest point in S .

2.1. Uncentered linear PCA case

An uncentered linear PCA is carried out through the singular value
decomposition of the uncentered sample matrix, which is denoted as

X := [x1 x2 · · ·xn] = UuΣuV
T
u , (5)
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where Uu := [u
[u]
1 u

[u]
2 · · ·u[u]

N ] ∈ R
N×N and V u := [v

[u]
1 v

[u]
2

· · ·v[u]
n ] ∈ R

n×n are orthogonal matrices, and, if n > N for in-
stance, Σu := [diag(σ

[u]
1 , σ

[u]
2 , · · · , σ[u]

N ) ON×(n−N)] ∈ R
N×n.

Here, ON×(n−N) is the N × (n−N) zero matrix.
We express w as

w =

N∑
i=1

βiu
[u]
i = Uuβ, (6)

where β := [β1, β2, · · · , βN ]T ∈ R
N . Plugging (5) and (6) into

(2), we obtain

g = V uΣuU
T
uUuβ =

n∑
i=1

βiσ
[u]
i v

[u]
i . (7)

Define the principal subspace M[u]
d := span{u[u]

1 ,u
[u]
2 , · · · ,u[u]

d }
⊂ R

N . For Xd :=
[
PM[u]

d

(x1), PM[u]
d

(x2), · · · , PM[u]
d

(xn)
]
∈

R
N×d, it holds [10] that XT

dŵ = XTPM[u]
d

(ŵ), from which the

following equivalence can be verified:

min
ŵ∈RN

(y−XT
dŵ)T(y−XT

dŵ) ⇔ min
ŵ∈M[u]

d

(y−XTŵ)T(y−XTŵ).

A simple inspection of (7) implies that |βi|σ[u]
i (≥ 0) expresses the

amount of ‘information’ that is lost by excluding u
[u]
i in the estima-

tion of w. Since wTu
[u]
i = βi from (6), one can verify with (7)

that

|gTv
[u]
i | = |βi|σ[u]

i = σ
[u]
i |wTu

[u]
i |. (8)

2.2. Centered linear PCA case

Define the centered sample vectors ξi := xi − x̄ ∈ R
N , i =

1, 2, · · · , n, where x̄ := 1
n

∑n
i=1 xi, and let Ξ := [ξ1 ξ2 · · · ξn].

Centered linear PCA is carried out through the singular value de-
composition of Ξ, which is denoted as

Ξ = UΣV T, (9)

where U := [u1 u2 · · ·uN ] ∈ R
N×N and V := [v1 v2 · · ·vn] ∈

R
n×n are orthogonal matrices, and, if n > N for instance, Σ :=[
diag(σ1, σ2, · · · , σN) ON×(n−N)

] ∈ R
N×n with σ1 ≥ σ2 ≥

· · · ≥ σN ≥ 0.
The mean output ȳ := 1

n

∑n
i=1 yi = x̄Tw + ε̄, where ε̄ :=

1
n

∑n
i=1 εi, contains the component originated from the mean-input

vector x̄ (on top of the noise mean). As this component is common
to all the outputs, we subtract it from yi as

ỹi := yi − ȳ = ξT
i w + ε̃i, i = 1, 2, · · · , n, (10)

where ε̃i := εi − ε̄. Note that, once an estimate ˆ̃yi of ỹi becomes
available, yi can easily be estimated as ŷi := ˆ̃yi + ȳ. The ‘centered’
output ỹi is originated from the ‘deviation’ vector ξi, excluding the
noise deviation ε̃i. One may thus achieve efficient dimensionality-
reduction, without losing essential information for estimating ỹi, by
projecting ξi onto a principal subspace of Ξ.

We now define the essential relevant information vector g̃ :=
[g̃1, g̃2, · · · , g̃n]T with

g̃i := E(ỹi|x1,x2, · · · ,xn) = ξT
i w, i = 1, 2, · · · , n. (11)

0
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Fig. 1. An illustration of centered PCA.

Note here that E(ε̃i) = 0 due to the zero-mean noise assumption.
Since g̃ = ΞTw, we obtain

|g̃Tvi| = |σi(w
Tui)|. (12)

Centered PCA is illustrated in Fig. 1, where VL := ML+x̄ := {x+
x̄ | x ∈ ML} with the principal subspace ML := span{ui}di=1 of
dimension d. In the figure, M⊥

L is the orthogonal complement of the
subspace ML. From (12), it is seen that the essential contribution
decays at the same rate as σi, as in the uncentered case.

3. CONTRIBUTIONS OF PRINCIPAL EIGENFUNCTIONS
IN NONLINEAR REGRESSION

Let κ : R
N × R

N → R be a reproducing (or equivalently pos-
itive definite) kernel. A typical example of reproducing kernel is
the Gaussian kernel: κ(x,y) := exp[−(x − y)T(x − y)/2σ2],
x, y ∈ R

N , for some positive constant σ > 0. We denote by H the
reproducing kernel Hilbert space (RKHS) associated with κ. The
nonlinear mapping Φ : RN → H, x �→ φx is often called the fea-
ture map, where φx(y) = κ(x,y) ∈ R, y ∈ R

N . Denote by 〈·, ·〉
and ‖·‖ the inner product and the norm defined in H, respectively.

3.1. Nonlinear regression model and linearization

We consider a nonlinear regression model

yi := ψ(xi) + εi, i = 1, 2, · · · , n. (13)

We assume here that ψ ∈ H so that ψ(xi) = 〈ψ,Φ(xi)〉. Thus,
Φ(xi) is an “uncentered” feature vector (or an “uncentered” sample
vector in the feature space H). Define the closed subspace M :=
span{Φ(xi)}ni=1, and denote its orthogonal complement by M⊥ :=
{f ∈ H | 〈f, g〉 = 0, ∀g ∈ M}. Under the orthogonal decomposi-
tion [10] H = M⊕M⊥, the vector ψ can be decomposed as

ψ = PM(ψ) + PM⊥ (ψ). (14)

As Φ(xi) ∈ M for all i = 1, 2, · · · , n by definition of M, it fol-
lows that

ψ(xi) = 〈PM(ψ),Φ(xi)〉 . (15)

The vector PM(ψ) on M can be expressed as

PM(ψ) =
n∑

j=1

αjΦ(xj) (16)
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for the coefficients αj , j = 1, 2, · · · , n. By (15) and (16), it follows
that

ψ(xi) =
n∑

j=1

αjκ(xi,xj) = αTk
[u]
i , (17)

where k
[u]
i := [κ(xi,x1), κ(xi,x2), · · · , κ(xi,xn)]

T and α :=

[α1, α2, · · · , αn]
T. By (13) and (17), the output vector can be writ-

ten as

y = Kuα+ ε, (18)

where the kernel matrix Ku := [k
[u]
1 k

[u]
2 · · ·k[u]

n ] is symmetric and
positive semi-definite.

3.2. Uncentered kernel PCA case

We consider an uncentered kernel PCA based on the eigenvalue de-
composition of the kernel matrix:

Ku = QuΛuQ
T
u, (19)

where Qu := [q
[u]
1 q

[u]
2 · · · q[u]

n ] ∈ R
n×n is an orthogonal matrix

and Λu := diag(λ[u]
1 , λ

[u]
2 , · · · , λ[u]

n ) ∈ R
n×n with λ[u]

1 ≥ λ
[u]
2 ≥

· · · ≥ λ
[u]
n ≥ 0. Comparing (18) with (2) under (19), we immedi-

ately obtain from (8) the following relation:

|gTq
[u]
i | = λ

[u]
i |αTq

[u]
i |. (20)

Here, g = [ψ(x1), ψ(x2), · · · , ψ(xn)]
T in this case (see (3) for its

definition).

3.3. Centered kernel PCA case

We consider the feature vector centered in the RKHS H:

φi := Φ(xi)− φ̄, i = 1, 2, · · · , n, (21)

where φ̄ := 1
n

∑n
i=1 Φ(xi). It then holds that

PM(ψ) = ηφ̄+

n∑
j=1

αjφj , (22)

where η :=
∑n

j=1 αj . Note that φ̄ 
∈ Mφ := span{φi}ni=1 in
general (see Appendix). Kernel PCA is based on the spectral de-
composition of the sample covariance operator1

C :=

n∑
i=1

φi ⊗ φ̄i, (23)

where ⊗ denotes the Schatten product,2 i.e., (φi ⊗ φ̄i)f :=
〈φi, f〉φi for any f ∈ H. Since C is a finite-dimensional operator
(i.e., its image has a finite dimension at most n), it is a compact
operator (or a completely continuous operator).3 Hence, the spectral
representation theorem admits the following representation:

C =

r∑
i=1

λipi ⊗ p̄i, (24)

1The sample covariance operator is also expressed in the following way
[2]: C := 1

n

∑n
i=1(Φ(xi) − φ̄)(Φ(xi)− φ̄)T.

2The bar on φi is a part of the Schatten product.
3A linear operator is said to be a compact operator (or a completely con-

tinuous operator) if it maps a bounded set to a compact set.

where {pi}ri=1 ⊂ H is an orthonormal basis of the r-dimensional
subspace Mφ, and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 (see Appendix).

It is known that the eigenvalue problem of C is a dual problem
of the eigenvalue problem of K ∈ R

n×n with its (i, j) entry ki,j :=
〈φi, φj〉. The eigenvalue decomposition of K is denoted as

K =: [k1 k2 · · ·kn]
T = QΛQT, (25)

where Q := [q1 q2 · · · qn] ∈ R
n×n is an orthogonal matrix, and

Λ := diag(λ1, λ2, · · · , λn) ∈ R
n×n, where λi := 0 for i = r +

1, · · · , n. Define a bounded linear operator

A : H → R
n, f �→ [〈φ1, f〉 , 〈φ2, f〉 , · · · , 〈φn, f〉]T. (26)

Its spectral representation is then given by

A =

r∑
i=1

√
λiqi ⊗ p̄i. (27)

Denoting by A∗ the adjoint operator of A, one can verify that C =
A∗ ◦A and K = A ◦A∗, where the latter equation holds when one
regards K as a linear operator from R

n to R
n (the symbol ◦ denotes

composition of operators). Since 〈Af,x〉 =
∑n

i=1 xi 〈φi, f〉 =〈
f,

∑n
i=1 xiφi

〉
for any f ∈ H and x := [x1, x2, · · · , xN ]T ∈

R
N , it holds that A∗x =

∑n
i=1 xiφi. It then follows immedi-

ately that K1 = A(A∗1) = A(
∑n

i=1 φi) = A(0) = 0, where
1 := [1, 1, · · · , 1]T ∈ R

n. This implies that the matrix K is rand-
deficient, and thus r ≤ n− 1 (cf. Appendix).4

In the present nonlinear case, the centered output defined in (10)
is given by

ỹi = 〈ψ, φi〉+ ε̃i, i = 1, 2, · · · , n. (28)

Accordingly, each component of g̃ (see (11)) is given by

g̃i = 〈ψ,φi〉 =
〈
PMφ(ψ), φi

〉
, i = 1, 2, · · · , n, (29)

where the second equality is verified with φi ∈ Mφ. We are now
ready to show the following theorem.

Theorem 1 Let PMφ(ψ) =
∑n

i=1 γiφi = A∗γ ∈ Mφ, where
γ := [γ1, γ2, · · · , γn]T ∈ R

n. Then, the contribution of qi to the
essential relevant information vector g̃ is given by

|g̃Tqi| = λi|γTqi|. (30)

Proof. Substituting PMφ(ψ) = A∗γ into (29), we obtain g̃i =
〈A∗γ, φi〉 and thus

g̃ = A ◦A∗(γ) = Kγ. (31)

By (25) and (31), one can verify the assertion. �

Theorem 1 states that the contribution of qi to the essential rel-
evant information vector g̃ decays at the same rate as λi, as in the
case of the uncentered kernel PCA.

4Let p =
∑n

i=1 qiφi ∈ H, qi ∈ R, i = 1, 2, · · · , n. Then, λp =

Cp, λ ∈ R, if and only if λKq = K2q, where q := [q1, q2, · · · , qn]T.
Therefore, any solution q of the dual eigenvalue problem λq = Kq gives p
such that λp = Cp (see [2]). However, q corresponding to λ = 0 may give
p = 0, as is the case of q = 1. In such a case, the solution q does not give a
solution to the primal eigenvalue problem, since p = 0 is not an eigenvector
by definition.
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3.4. Discussion

Relation to prior work: We discuss the relation between (20) and
the result in [3, Theorem 1]. Referring to (20), one can see that the
right hand side contains a sole term which decays at the same rate as
the eigenvalue λi. The truncation error contained in the result in [3]
does not appear in our analysis due to the simple derivation without
using the integral operator. The absence of the truncation error re-
sults in the exact equality appearing in (20) (unlike the result in [3]
which shows an upper bound of |gTqi| essentially). One may con-
cern a situation when the values of |αTqi| are small for the leading
eigenvectors compared to those for minor eigenvectors. This situa-
tion however corresponds to the case where many of the sample vec-
tors xi are filtered out by the nonlinear function ψ and accordingly
many of the outputs yi contain little signals. In such a situation, the
learning problem itself is very challenging, and it would be advised
to attain some extra sample vectors that are not filtered out by ψ. It
should be mentioned that the decay rate of λi depends on the choice
of the kernel (see [3]).

4. NUMERICAL EXAMPLE

We conduct a computer simulation using toy data of dimension N =
2 to illustrate performance of the variants of kernel PCA: the uncen-
tered kernel PCA and the centered kernel PCA. Training dataset is
generated as follows:

1. specify five different cluster centers c1 := (0, 0), c2 :=
(5, 4), c3 := (−3, 2), c4 := (1, 4), c5 := (10,−5), and

2. generate 100 data points randomly around one of the clus-
ter centers from the i. i. d. normal distribution N (ci, 0.04I),
where the cluster center is chosen randomly with equal prob-
ability for each data point.

Test dataset is generated in exactly the same way as (but indepen-
dently from) the training data. The noise ε obeys the i.i.d. normal
distribution N (0, 0.01). The nonlinear function ψ and the training
data are depicted in Figure 2. In kernel PCA, the Gaussian kernel is
used for σ := 0.2.

Figure 3 plots (a) the singular values of the kernel matrix
Ku (Uncentered) and K (Centered), and (b) the estimation er-
ror

√
(ytest − ŷ)T(ytest − ŷ)/yT

testytest, where ytest is the ouput
vector for the test data and ŷ is its estimate. One can see that there
is no notable difference in the singular-value decay between the two
cases. Referring to Figure 3(b), the centered and uncentered kernel
PCAs show a similar tendency.

5. CONCLUSION

We studied the contributions of the kernel principal components to
the relevant information in nonlinear regression for both centered
and uncentered cases. Our simple derivation enabled to deal with
the centering operation explicitly and led to the exact analytic ex-
pression of the contribution (containing no truncation errors). It
turned out that the essential contribution decayed at the same rate
as the eigenvalues. The numerical example showed that the centered
and uncentered kernel PCAs had a similar tendency in test-error-
decay characteristics. The present study will be useful to estimate
the relevant dimension in nonlinear regression under the centering
operation, as well as improving the performance of kernel adaptive
filtering [11–17].

APPENDIX

By definition of C, the number r of nonzero eigenvalues of C
equals to the dimension of Mφ(:= span{φi}ni=1). We can verify
the following lemmas. (All the lemmas shown below apply to linear
PCA. We omit the proof of the second lemma).
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Lemma 1 Assume that φ̄ 
∈ Mφ. Then, the following statements
hold.

1. M = Mφ+span{φ̄} := {f+g | f ∈ Mφ, g ∈ span{φ̄}}
2. dim(Mφ) = dim(M)− 1.

Proof of 1: It is clear that Φ(xi) = φi + φ̄ ∈ Mφ + span{φ̄},
which implies that M ⊂ Mφ + span{φ̄}. On the other hand, it
holds that φi, φ̄ ∈ M, which implies that M ⊃ Mφ + span{φ̄}.
This completes the proof.
Proof of 2: Clear from Lemma 1.1 and the assumption. �

Lemma 2 φ̄ ∈ Mφ if and only if 0 ∈ aff{Φ(xi)}ni=1; i.e., there
exist αi ∈ R, i = 1, 2, · · · , n, such that

∑n
i=1 αi = 1 and∑n

i=1 αiΦ(xi) = 0. Here, aff(·) stands for the affine hull.

Lemma 3 If {Φ(xi)}ni=1 is linearly independent, then φ̄ 
∈ Mφ.

Proof. It is clear that 0 ∈ aff{Φ(xi)}ni=1 ⇔ [
∑n

i=1 αiΦ(xi) = 0
for some αi ∈ R such that

∑n
i=1 αi = 1] ⇒ [{Φ(xi)}ni=1 is lin-

early dependent]. Hence, the linear independence assumption im-
plies 0 
∈ aff{Φ(xi)}ni=1 and thus φ̄ 
∈ Mφ by Lemma 2. �

Lemma 3 suggests that, when the Gaussian kernel is employed,
φ̄ 
∈ Mφ and hence the statements of Lemma 1 hold true.
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