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ABSTRACT

This paper investigates, from information theoretic principles,
a learning problem based on the principle that any regularity
in a given dataset can be exploited to extract compact fea-
tures from data, in order to build meaningful representations
of a relevant content. We begin by introducing the fundamen-
tal tradeoff between the average risk and the model complex-
ity. Interestingly, our formulation allows an information the-
oretic formulation of the multi-task learning (MTL) problem.
Then, we present an iterative algorithm for computing the op-
timal tradeoffs. Remarkably, empirical results illustrate that
there exists an optimal information rate minimizing the excess
risk which depends on the nature and the amount of available
training data. An application to hierarchical text categoriza-
tion is also investigated, extending previous works.

Index Terms— Information Bottleneck, Arimoto-Blahut
Algorithm, Multi-Task Learning, Side Information

1. INTRODUCTION

The actual goal of learning is neither accurate estimation of
model parameters; rather, we are interested in the generaliza-
tion capabilities, i.e., its ability to successfully apply rules ex-
tracted from previously seen data to characterize unseen data.
It is known that complex models tend to produce overfitting,
i.e., represent the training data too accurately, therefore di-
minishing their ability to handle unseen data. To overcome
this issue, regularization methods include parameter penal-
ization, noise addition, and averaging over multiple models
trained with different sample sets. Nevertheless, it is still not
clear how to optimally control the model complexity making
this problem an active research topic in machine learning.

Shannon [1] provides a function for measuring the distor-
tion (or loss) between the original signal and its compressed
representation. The rate-distortion function is related to a
similarity measure in cluster analysis and has demonstrated
substantial performance improvement over standard learning
methods (see [2] and references therein). Tishby et al. [3]
associated this information-theoretic setup to a learning prob-
lem with a specific loss function. The idea of the so-called
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Fig. 1. Block diagram of IB problem with side information.

Information Bottleneck (IB) method is to identify relevant in-
formation from observed samples as being the information
that those observations provide about another hidden signal.
Since then, it was applied to derive several clustering algo-
rithms for a wide variety of problems such as: text classifica-
tion [4], speaker recognition [5], among others.

The algorithm for computing the classical rate-distortion
problem was developed independently by Arimoto [6] and
Blahut [7]. Although this algorithm can be applied to the IB
criterion [3], we emphasize that conventional algorithms [6,
7] are only expected to converge to a local minimum since
the IB is a non-convex problem. Chechik et al. [8] adapts
a Blahut–Arimoto algorithm to include a restricted form of
side information. In a different but related optimization prob-
lem, Kumar and Thangaraj [9] adapt the Blahut–Arimoto al-
gorithm and analysis techniques provided in [10] to a non-
convex problem. Yasui and Matsushima [11] extend the Ku-
mar idea for computing information-rate regions.

MTL [12] is an approach to inductive transfer that im-
proves generalization by using the domain information con-
tained in the training signals of related tasks as an inductive
bias. It does this by learning tasks in parallel while using a
shared data representation. What is learned for each task can
help other tasks to be learned better and thus can result in im-
proved efficiency and prediction accuracy when compared to
training the models separately [13]. An information-theoretic
environment for MTL was introduced in [14].

In this paper, we first introduce an information-theoretic
paradigm which provides the fundamental tradeoff between
the log-loss (average risk) and the information rate of the
features (statistical model complexity). We derive an itera-
tive Arimoto-Blahut like algorithm to approach the IB prob-
lem when there is side information only at the decoder, as
described in Fig. 1. It is important to mention that this IB
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method formulation as a noisy source coding problem with
side information at the decoder provides an information the-
oretic view of the MTL problem providing an interesting link
between the areas of machine learning and Shannon theory. In
our framework, the encoder aims at extracting relevant (com-
mon) information U from a data set X about labels Y |Z = z
which depends on several related tasks Z at the decoder. The
representations are expected to summarize the data X in a
compact way, where compactness of the model is measured
in terms of the minimum Shannon entropy rate. An impor-
tant property of our approach is that it provides a natural safe-
guard against overfitting by minimizing an average risk penal-
ized by the model complexity. Remarkably, empirical results
illustrate that there exists an optimal information rate mini-
mizing the excess risk which depends on the nature and the
amount of available training data. We evaluate the perfor-
mance of this algorithm on hierarchical text categorization of
documents and numerical results demonstrates its merits in
terms of the classification performance. Major mathematical
details of the results of this papers can be found in [15].

2. PROBLEM DEFINITION AND MAIN RESULT

Let (X,Y, Z) be random variables with joint probability mass
function PXY Z . A random encoder PU |X wishes to extract
from X information about a collection of labels Y |Z = z,
with z ∈ Z , when the randomly chosen task-request index Z
is available only at the decoder, as shown in Fig. 1. The best
decoder PY |UZ will depend on the encoder selection PU |X
and PXY Z and is given by

PY |UZ =

∑
x PU |XPXY Z∑
x PU |XPXZ

. (1)

It is easy to see that finding the encoder that minimizes the
log-loss risk is equivalent to search for the encoder maxi-
mizing the mutual information I(Y ;U |Z) (relevance). We
will focus on maximizing this mutual information subject
to a bound on the complexity (Shannon information rate)
I(X;U |Z). The reason why these concepts are defined in
this way is evident in the multi-letter characterization [16].

Definition 1 (Rate-Relevance Region). A pair rates (R,µ) is
achievable iff it belongs to the rate-relevance region:

R =
{
(µ,R) ∈ R2

≥0 : ∃ PU |X/ R ≥ I(X;U |Z),
µ ≤ I(Y ;U |Z), PXY ZU = PU |XPXY Z

}
(2)

The corresponding relevance-rate function is defined by

L(R,PXY Z) = max
PU|X : I(U ;X|Z)≤R

I(U ;Y |Z). (3)

We easily see that the relevance-rate function, as the
upper-boundary of R provides an alternative and complete

characterization of this region. Using duality theory, (3) can
be shown to be equivalent:

Vλ = max
PU|X

λI(Y ;U |Z)− (1− λ)I(X;U |Z), λ ∈ [0, 1].

(4)
We call f(λ, PU |X) = λI(Y ;U |Z) − (1 − λ)I(X;U |Z) in
order to simplify the notation. Our approach is to obtain an
algorithm which is able to find for every λ ∈ [0, 1] the op-
timal pmf P ∗,λU |X that achieves the maximum in (4) and eval-
uating the corresponding mutual informations. The function
f(λ, PU |X) can be written as:

f(λ, PU |X) = (2λ− 1)I(X;U |Z)− λI(X;U |Y,Z). (5)

It is appropriate to define the algorithm in two different ways
depending on the value of λ. This is similar to the approach
in [11]. If λ ∈ [0, 0.5], both terms of (5) are non-positive, and
the solution is trivial (Vλ = 0). Clearly, this is achieved for
all pmf that satisfies PU |X = PU (U independent of X). The
more interesting case is when λ ∈ (0.5, 1]. In that case the
proposed algorithm is an iterative one. Let an initial condition
P

(0)
U |X , the algorithm iterate until convergence between:

Q
(n+1)
U |Y Z =

∑
x

P
(n)
U |XPX|Y Z , Q

(n+1)
X|ZU =

P
(n)
U |XPX|Z∑

x′ P
(n)
U |X′PX′|Z

(6)

P
(n+1)
U |X = kx · exp

{
2λ− 1

λ

∑
z

PZ|X log(Q
(n+1)
X|ZU )

+
∑
y,z

PY |XZPZ|X log(Q
(n+1)
U |Y Z )

}
(7)

where kx are constant such that
∑
u P

(n+1)
U |X = 1 ∀ x ∈ X .

3. ALGORITHM ANALYSIS

In this section we will provide an analysis of (6) and (7). We
define the function F (λ, PU |X , QU |Y Z , QX|ZU ) as:

F (λ, PU |X , QU |Y Z , QX|ZU )

= (2λ− 1)
∑
x,z,u

PU |XPXZ log

(
QX|ZU

PX|Z

)
− λ

∑
x,y,z,u

PU |XPXY Z log

(
PU |X

QU |Y Z

)
, (8)

where QU |Y Z , QX|ZU are arbitrary pmfs. This new function
has some properties.

Theorem 1. Consider any PU |X and let λ ∈ (0.5, 1]. The
following properties are true:
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1. f(λ, PU |X) ≥ F (λ, PU |X , QU |Y Z , QX|ZU ), and
equality is achieved iff QU |Y Z = PU |Y Z ∀ (y, z) ∈
Y × Z and QX|ZU = PX|ZU ∀(z, u) ∈ Z × U .

2. The value Vλ satisfies

Vλ = max
PU|X

max
QU|Y Z ,QY |ZU

F (λ, PU |X , QU |Y Z , QX|ZU ).

3. For anyQU |Y Z , QX|ZU and λ ∈ (0.5, 1], F is concave
in PU |X and it achieves its maximum iff

PU |X = kx · exp

{
2λ− 1

λ

∑
z

PZ|X log(QX|ZU )

+
∑
y,z

PY |XZPZ|X log(QU |Y Z)

}
, (9)

where kx are constants such that
∑
u PU |X = 1 ∀x.

The proof and other algorithm properties can be reader in
[15]. We see that function F (λ, PU |X , QU |Y Z , QX|ZU ) pro-
vides an achievable and easy way to optimize a lower bound
to the objective function f(λ, PU |X) for each PU |X . Interest-
ingly enough, PU |X 7→ F (λ, PU |X , QU |Y Z , QX|ZU ) is con-
cave for each (QU |Y Z , QX|ZU ), guaranteeing that any local
optimum is also a global one. These facts lead naturally to the
iterative process in (6) (7) to perform the double maximiza-
tion which should result in Vλ. For a given λ ∈ (0.5, 1] and
starting from an initial condition P

(0)

U|X , and according to 2)
in Theo. 1 we find Q(1)

U|Y Z , Q(1)

X|ZU such that the maximum of
F (λ, P

(0)

U|X , QU|Y Z , QX|ZU ) for fixed P (0)

U|X is achieved. Next,
from 3) in the previous theorem, we find P (1)

U|X as the argument
that maximize F (λ, PU|X , Q

(1)

U|Y Z , Q
(1)

X|ZU ). It is easy to show
that the sequence of values F (λ, P

(n)

U|X , Q
(n)

U|Y Z , Q
(n)

X|ZU ) pro-
vided by the iterative process is monotone non-decreasing.
This clearly guarantees that the process is convergent. A
global convergence analysis can be seen in [15].

4. NUMERICAL EXAMPLES

In this section, we will exemplify the use of the proposed al-
gorithm for different problems and applications.

4.1. Compression-based regularization learning

In previous sections, we have shown that the problem of
maximizing the relevance I(U ;Y |Z) subject to a mutual-
information constraint I(U ;X|Z) ≤ R is equivalent to the
maximization problem of f(λ, PU |X). We now show that this
constraint can act as a regularization when applied to situ-
ations where the joint statistics controlling the observations
PXY Z is not known but it is estimated via training samples.
Indeed, Shamir et al. [17] have already showed evidence that
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Fig. 2. Excess risk (11) as a function of information rate.

this term can help to prevent “overfitting”. It should men-
tioned that these analysis were performed for the classical
IB setting in which side information is not present. In this
section, we provide numerical evidence that the desired reg-
ularization effects also hold in our MTL setup. Consider a
multi-task supervised classification problem and define the
average risk:

Risk
(
PU |X , PŶ |UZ

)
= EPXY ZPU|X [− logPŶ |UZ(Y |UZ)],

(10)
with respect to an encoder PU |X and a decoder PŶ |UZ . Find-
ing the optimal encoder in (10) requires knowledge of the un-
derlying distribution PXY Z . From a practical perspective, as
the input to the proposed algorithm, we will use the data sam-
pling distribution P̂XY Z based on n training labeled exam-
ples. By introducing the rate constraint (or penalization), the
optimization problem is reduced to optimizing L(R, P̂XY Z)
in (3) from which the resulting encoder P̂ ∗,λU|X is derived while
the decoder P̂ ∗,λ

Ŷ |UZ
follows from expression (1)1. Our mea-

sure of merit will be the Excess-risk:

Excess-risk = Risk
(
P̂ ∗,λU |X , P̂

∗,λ
Ŷ |UZ

)
−H(Y |XZ). (11)

The source parameters for the experiment show in Fig. 2 can
be read in [15]. In Fig. 2, we plot the excess risk curve as
a function of the rate constraint for different size of training
samples. With dash lines we denoted the rate R such that
the excess risk achieves its minimum. When the number of
training samples increases the optimal rate R approaches its
maximum possible value: H(X|Z) (dashed in black). No-
tice that for every curve there exists a different limiting rate
Ĥ(X|Z), such that for each R ≥ Ĥ(X|Z), the excess-risk
remains constant with value Î(X;Y |Z). In addition, for ev-
ery size of training samples, there is an optimal rate value
which provides the lowest value for the excess-risk in (11). In
a sense, this is indicating that the rate R can be interpreted as
an effective regularization term and hence, it can provide ro-
bustness for learning in practical situations in which the true

1Note that when the decoder is chosen as in (1), Risk
(
PU|X , PŶ |UZ

)
=

H(Y |UZ) ≥ H(Y |XZ).
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Fig. 3. Hierarchical text categorization scheme.

input distribution is not known and the empirical data distri-
bution is used. It is worth to mention that when more data is
available then the optimal value of the regularizing rate be-
comes less critical.

4.2. Hierarchical text categorization

High dimensionality of text can become a severe deterrent
to the task of text classification. This issue can be allevi-
ated by intelligently grouping different classes in disjoint sub-
categories. In this way a first classification problem can be
set over the generated sub-categories and the information ex-
tracted can be used in a second classification problem to dis-
criminate better between the original classes. This is the case
in hierarchical text classification [8], [18].

In order to solve this problem, we propose the scheme of
Fig. 3. Consider a document d consisting of different words
X . We want to estimate the class Y2 to which the document
belongs by using information related to a sub-category Y1
(typically related to the text topic) to which the same docu-
ment also belongs. We consider the following setting. A pair
of encoder 1-decoder 1 tries to estimate the document sub-
category Ŷ1 using our algorithm without side information (Z
is a constant) and with input PXY1

. This is clearly a standard
classification problem where U1 is the feature that encoder 1
extracted from X . The encoder 2-decoder 2 pair tries to gen-
erate the final classification in Ŷ2 using our algorithm with
input PXY1U1 . In this case, U1 can be considered as side in-
formation available at the decoder 2. We see that this problem
can be interpreted as MTL problem where the different clas-
sification problems (tasks) to be solved by the decoder 2 are
induced by the features extracted by encoder 1.

Assume a training set consisting of documents belonging
to |Y2| classes. The distribution PY1|Y2

is known because
the sub-category Y1 is a function of the more refined class
Y2. The class priors PY2

are replaced by the empirical dis-
tribution and the words distribution conditional to the class
PX|Y2

, is estimated using Laplace rule of succession [19].
Once pmfs PU1|X and PU2|X are calculated using the pro-
posed algorithm, we estimate the class of the document ŷ2(d)
using the maximum a posteriori probability:

ŷ2(d) = argmax
y∈Y2

PY2|D(y|d) (12)
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Fig. 4. Classification Accuracy in the hierarchical text cate-
gorization problem.

= argmax
y∈Y2

[
log (PY2) +

∑
u1,u2

n(u1, u2, d) logPU1U2|Y2

]
,

where n(u1, u2, d) is the number of jointly occurrences of
clusters (u1, u2) in the document d computed with:

uj(x) = argmax
u

PUj |X(u|x), j ∈ {1, 2}. (13)

We test the above proposed classification procedure on the
20 Newsgroups (20Ng) data set [20]. The 20 Newsgroups
correspond to 6 topics. In this case, the sub-category Y1 is the
topic and the refined classification Y2 is the Newsgroup. In
Fig. 4, our algorithm performance (λ = 0.99) versus |U2| is
compared with the algorithm without side information (which
is a single-task setup) and the one proposed in [8]. It is inter-
esting to mention that the single-task setting and the one in
[8] can be covered using our algorithm (details can be read in
[15]). Our setting and the one in [8] show an improvement
with respect to the single task setup (without side informa-
tion). This suggests that exploiting the common features in
MTL may be advantageous. Further our setting uses the ad-
ditional information in a structured manner to show an im-
provement with respect to the other proposals.

5. SUMMARY AND DISCUSSION

From information-theoretic methods, we have investigated
the MTL framework in which an encoder builds a common
representation for several related tasks. We derived an iter-
ative learning algorithm that uses compression as a natural
safeguard against overfitting. Empirical evidence shows that
there exists an optimal information rate minimizing the excess
risk according to the amount of available training data. It is
observed that these optimal rates increase with the size of the
training set. An application to hierarchical text categorization
was also investigated.

At present, several open questions remain regarding the
statistical regularization properties of building compact data
representations. Applications of the proposed algorithm to
other MTL problems also deserve some efforts.
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