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ABSTRACT

The analysis of large datasets is often complicated by the
presence of missing entries, mainly because most of the cur-
rent machine learning algorithms are designed to work with
full data. The main focus of this work is to introduce a clus-
tering algorithm, that will provide good clustering even in the
presence of missing data. The proposed technique solves an
`0 fusion penalty based optimization problem to recover the
clusters. We theoretically analyze the conditions needed for
the successful recovery of the clusters. We also propose an al-
gorithm to solve a relaxation of this problem using saturating
non-convex fusion penalties. The method is demonstrated on
simulated and real datasets, and is observed to perform well
in the presence of large fractions of missing entries.

Index Terms— clustering, missing entries, non-convex
penalties

1. INTRODUCTION

Clustering is a popular unsupervised data analysis technique
for finding natural groupings in the absence of training data.
Specifically, it assigns each data point to a group, such that
all points within a group are similar and points in different
groups are dissimilar in some sense. Clustering methods are
widely used in the analysis of gene expression data, image
segmentation, identification of lexemes in handwritten text,
search result grouping and recommender systems [1, 2].

Most clustering algorithms cannot be directly applied to
datasets with missing entries. For example, gene expression
data often contains missing entries due to image corruption,
fabrication errors or contaminants [3], rendering gene cluster
analysis difficult. Likewise, large databases used by recom-
mender systems (e.g Netflix) usually have a huge amount of
missing data, which makes pattern discovery challenging [4].
Similar issues are reported in the context of missing responses
in surveys [5] and failing imaging sensors in astronomy [6]
are reported to make the analysis in these applications chal-
lenging. The most obvious way to apply existing clustering
algorithms to data with missing entries is to convert the data
to a complete one. This can be done using deletion or impu-
tation [7]. An extension of the weighted sum-of-norms algo-
rithm [8] has been proposed where the weights are estimated
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from the data points by using some imputation techniques on
the missing entries [9]. A majorize minimize algorithm was
introduced to solve for the cluster-centres and cluster mem-
berships in [10], which offers proven reduction in cost with
iteration. However, these is no theoretical analysis of these al-
gorithms, which makes it difficult to determine what fraction
of entries need to be sampled to recover the correct clusters.

In this paper, we introduce an algorithm to cluster data
when some of the features are missing in each point. The
method is inspired by the recently proposed sum-of-norms
clustering technique [8]. This technique assigns a surrogate
variable to each data point, which is an estimate of the cluster
centre to which that point belongs. When a fusion penalty is
used, it is observed that the surrogate variables belonging to
the same cluster coalesce to that centre point. These values
denote the estimated cluster centres. Guarantees for correct
clustering using this technique are available for the case with-
out missing entries [11]. In prior work, we used a weighted
convex fusion penalty to recover under-sampled MRI images
lying on a manifold [12, 13], where the weights were esti-
mated using a special navigator acquisition. In this work, we
propose an optimization problem with an `0 norm based fu-
sion penalty, since we have observed that non-convex fusion
penalties provide better clustering performance. We theoreti-
cally analyze the conditions for clustering data using the pro-
posed optimization technique, when several features are miss-
ing. This analysis reveals that the clustering performance is
determined by factors such as cluster-separation, cluster vari-
ance and feature coherence. When two clusters are distin-
guishable by very few features, then it is difficult to distin-
guish between them if these features are not observed, making
feature coherence important. We also obtain a higher proba-
bility of successful clustering in the presence of fewer miss-
ing entries. We propose an algorithm to efficiently solve a
relaxation of this optimization problem, using saturating non-
convex fusion penalties. It is experimentally demonstrated
that the proposed algorithm successfully clusters data in the
presence of large fractions of missing entries.

2. CLUSTERING USING `0 FUSION PENALTY

2.1. Background

We consider the clustering of points drawn from one of K
distinct clusters C1, C2, . . . , CK . We denote the center of the
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Fig. 1: Central Assumptions: (a) and (b) show different
datasets of points ∈ R2 lying in 3 clusters (denoted by red,
green and blue). A.1 and A.2 are illustrated in both (a) and
(b). The importance of A.3 can be appreciated by comparing
(a) and (b). In (a), points in the red and blue clusters cannot
be distinguished using only feature 1, while the red and green
clusters cannot be distinguished using only feature 2. Due to
low coherence in (b), this problem does not arise.

clusters by c1, c2, . . . , cK ∈ RP . For simplicity, we assume
that there are M points in each of the clusters. The individual
points in the kth cluster are modelled as:

zk(m) = ck + nk(m); m = 1, ..,M, k = 1, . . . ,K (1)

Here, nk(m) is the noise or the variation of zk(m) from the
cluster center ck. The set of input points {xi}, i = 1, ..,KM
is obtained as a random permutation of the points {zk(m)}.
The objective of a clustering algorithm is to estimate the clus-
ter labels, denoted by C(xi) for i = 1, ..,KM .

The sum-of-norms (SON) method is a recently proposed
convex clustering algorithm [8]. Here, a surrogate variable ui
is introduced for each point xi, which is an estimate of the
centre of the cluster to which xi belongs. In order to find the
optimal {u∗i }, the following optimization problem is solved:

{u∗i } = argmin
{ui}

KM∑
i=1

‖xi−ui‖22+λ
KM∑
i=1

KM∑
j=1

‖ui−uj‖p (2)

The fusion penalty (‖ui − uj‖p) can be enforced using
different `p norms, out of which the `1, `2 and `∞ norms
have been used in literature [8]. The use of sparsity promoting
fusion penalties encourages sparse differences ui−uj , which
facilitates the clustering of the points {ui}.

2.2. Central Assumptions

We make the following assumptions (illustrated in Fig 1),
which are key to the successful clustering of the points:

A.1: Cluster separation: Points from different clusters are
separated by δ > 0 in the `2 sense, i.e:

min
{m,n}

‖zk(m)− zl(n)‖2 ≥ δ; ∀ k 6= l (3)

A.2: Cluster size: The maximum separation of points within
any cluster in the `∞ sense is ε ≥ 0, i.e:

max
{m,n}

‖zk(m)− zk(n)‖∞ = ε; ∀k = 1, . . . ,K (4)

A.3: Feature concentration: The coherence of a vector y ∈
RP is defined as: µ(y) =

P‖y‖2∞
‖y‖22

. We bound the co-
herence of the difference between points from different
clusters as:

max
{m,n}

µ(zk(m)− zl(n)) ≤ µ0; ∀ k 6= l (5)

The quantity κ = ε
√
P
δ is a measure of the difficulty of the

clustering problem. The recovery of clusters when κ is small
is expected to be easier.

2.3. Theoretical Guarantees

We study the problem of clustering {xi} in the presence of
entries missing uniformly at random. We arrange the points
{xi} as columns of a matrix X. We assume that each entry
of X is observed with probability p0. The entries measured in
the ith column are denoted by:

yi = Si xi, i = 1, ..,KM (6)

where Si is the sampling matrix, formed by selecting rows
of the identity matrix. We consider solving the following op-
timization problem to obtain the cluster memberships from
data with missing entries:

{u∗i } =min
{ui}

KM∑
i=1

KM∑
j=1

‖ui − uj‖2,0

s.t ‖Si (xi − ui)‖∞ ≤
ε

2
, i ∈ {1 . . .KM}

(7)

We claim that the above algorithm can successfully recover
the clusters with high probability when the clusters are well
separated (low κ), the sampling probability p0 is sufficiently
high and the coherence µ0 is small. We state our theoretical
guarantees after defining the following quantities:

• Upper bound for probability that two points have <
p20P
2 commonly observed locations: γ0 := ( e2 )

− p
2
0P

2

• Given that two points from different clusters have >
p20P
2 commonly observed locations, upper bound for

probability that they can yield the same u without vio-

lating the constraints in (7): δ0 := e
− p

2
0P (1−κ2)2

µ20

• Upper bound for probability that two points from dif-
ferent clusters can yield the same u without violating
the constraints in (7): β0 := 1− (1− δ0)(1− γ0)
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• Upper bound for failure probability of (7): η0 :=∑
{mj}∈S

[
β

1
2 (M

2−
∑
j m

2
j )

0

∏
j

(
M
mj

)]
where S is the

set of all sets of positive integers {mj} such that: 2 ≤
U({mj}) ≤ K and

∑
jmj = M . Here, the function

U counts the number of non-zero elements in a set. For
example, if K = 2 then η0 =

∑M−1
i=1

[
β
i(M−i)
0

(
M
i

)2]
.

• For K = 2 and log β0 ≤ 1
M−1 + 2

M−2 log
1

M−1 , we
have η0 ≤M3βM−10 := η0,approx.

Lemma 2.1. Consider any two points x1 and x2 from the
same cluster. A solution u exists for the following equations:

‖Si (xi − u)‖∞ ≤ ε

2
; i = 1, 2 (8)

with probability 1.

Lemma 2.2. Consider any two points x1 and x2 from differ-
ent clusters, and assume that κ < 1. A solution u exists for
the following equations:

‖Si (xi − u)‖∞ ≤ ε

2
; i = 1, 2 (9)

with probability less than β0.

The above lemmas indicate that two points from the same
cluster can always be assigned the same centre u∗. However,
for a pair of points from different clusters, this can happen
with a probability < β0. We note that β0 decreases with a
decrease in κ. Using lemmas 2.1 and 2.2, we get the following
result for a large number of points from multiple clusters:

Lemma 2.3. Assume that {xi : i ∈ I, |I| = M} is a set
of points chosen randomly from multiple clusters (not all are
from the same cluster). If κ < 1, a solution u does not exist
for the following equations:

‖Si (xi − u)‖∞ ≤
ε

2
; ∀i ∈ I (10)

with probability exceeding 1− η0.

We note here, that for a low value of β0 and a high value
of M , we will arrive at a very low value of η0. Lemma 2.3
can be used to arrive at our main result:

Theorem 2.4. If κ < 1, the solution to the optimization prob-
lem (7) is identical to the ground-truth clustering with proba-
bility exceeding 1− η0.

The reasoning follows from the fact that all solutions with
cluster sizes smaller than M are associated with a higher cost
than the ground-truth solution. In the special case where there
are no missing entries, the constraints of optimization prob-
lem (7) reduce to: ‖xi − ui‖∞ ≤ ε

2 . We have the following
theorem guaranteeing successful recovery for the clusters:

Theorem 2.5. If κ < 1, the solution to the optimization prob-
lem (7) is identical to the ground-truth clustering in the ab-
sence of missing entries.

3. RELAXATION OF THE `0 PENALTY

We propose to solve the following relaxation of the optimiza-
tion problem (7), which is more computationally feasible:

{u∗i } = argmin
{ui}

KM∑
i=1

‖Si(ui − xi)‖22

+ λ

KM∑
i=1

KM∑
j=1

φ(‖ui − uj‖2)

(11)

Here φ is a function approximating the `0 norm, such as:

• `p norm: φ(x) = |x|p, for some 0 < p < 1.

• H1 penalty: φ(x) = 1− e−
x2

2σ2 .

Similar to [14, 15], we reformulate the problem by majorizing
the penalty φ using a quadratic surrogate functional: φ(x) ≤
w(x)x2+d, wherew(x) = φ

′
(x)
2x , and d is a constant. We now

state the majorize-minimize formulation for problem (11) as:

{u∗i , w∗ij} = arg min
{ui,wij}

KM∑
i=1

‖Si(ui − xi)‖22

+λ

KM∑
i=1

KM∑
j=1

wij‖ui − uj‖22

(12)

We solve problem (12) by alternating between minimization
with respect to {ui} and {wij} till convergence.

4. RESULTS

4.1. Study of Theoretical Guarantees

We observe the behaviour of γ0, δ0, β0 and η0 as a function of
p0, P, κ and M . In Fig 2 (a), the change in γ0 is shown as a
function of p0 for different values of P . In subsequent plots,
we fix P = 50 and µ0 = 1.5. In Fig 2 (b), the change in δ0
is shown as a function of p0 for different values of κ. In Fig
2 (c), the behaviour of β0 is shown. We consider K = 2 for
subsequent plots. (1− η0) is plotted in (d) as a function of p0
for different values of κ and M . As expected, the probability
of success of the clustering algorithm increases with decrease
in κ and increase in p0 and M .

4.2. Clustering of Simulated Data

We simulated datasets with K = 2 disjoint clusters in R50

with a varying number of points per cluster. The points in
each cluster follow a uniform random distribution. We study
the probability of success of the H1 penalty based clustering
algorithm as a function of κ, M and p0. For a particular set of
parameters the experiment was conducted 20 times. Fig 3 (a)
shows the result for datasets with κ = 0.39 and µ0 = 2.3. The
theoretical guarantees for successfully clustering the dataset
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Fig. 2: Study of Theoretical Guarantees. Quantities γ0, δ0
and β0 defined in Section 2.3 are studied in (a), (b) and (c).
In (b), (c) and (d), P = 50 and µ0 = 1.5. As expected, β0
decreases with increase in p0 and decrease in κ. Considering
K = 2 clusters, a lower bound for the probability of success-
ful clustering (1− η0) is shown in (d) for different κ.

Fig. 3: Experimental results for probability of success. Guar-
antees are shown for a simulated dataset with K = 2 clus-
ters. For (a) and (b), κ = 0.39 and µ0 = 2.3. (a) and (b)
show the experimental and theoretical values for the proba-
bility of success respectively. (c) shows the experimentally
obtained probability of success for a more challenging dataset
with κ = 1.15 and µ0 = 13.2. We do not have theoretical
guarantees for this case, since our analysis assumes κ < 1.

are shown in (b). Our theoretical guarantees hold for κ < 1.
However, we demonstrate in (c) that even with κ = 1.15 and
µ0 = 13.2, our clustering algorithm is successful.

Clustering results with K = 3 simulated clusters are
shown in Fig 4. We simulated Dataset-1 with K = 3 disjoint
clusters in R50 and M = 200 points in each cluster. For each
of these 3 cluster centres, 200 noisy instances were generated
by adding zero-mean white Gaussian noise of variance 0.1.
The dataset was sub-sampled with varying fractions of miss-
ing entries (p0 = 1, 0.9, 0.8, . . . , 0.3, 0.2). We also generate
Dataset-2 by halving the distance between the cluster centres,
while keeping the intra-cluster variance fixed. We test the
proposed algorithm on these datasets using the H1 penalty.
Since the points lie in R50, we take a PCA of the points
and their estimated centres and plot the 2 most significant
components. The 3 colours distinguish the points according

Fig. 4: Clustering results in simulated datasets. The H1

penalty is used to cluster two datasets with varying fractions
of missing entries. We show here the 2 most significant prin-
cipal components of the solutions. The original points {xi}
are connected to their cluster centre estimates {u∗i } by lines.

Fig. 5: Clustering the Wine dataset. The H1 penalty is used
for clustering with varying fractions of missing entries.

to their ground-truth clusters. Each point xi is joined to its
centre estimate u∗i by a line. We observe that the clustering
algorithm is more stable with fewer missing entries.

4.3. Clustering of Wine Dataset

We apply the clustering algorithm to the Wine dataset [16].
Each data point has P = 13 features. We created a dataset
without outliers by retaining only M = 40 points per clus-
ter, resulting in 120 points. The results are displayed in Fig
5 using the PCA technique as explained in the previous sub-
section. It is seen that the clustering is quite stable and de-
grades gradually with increasing fractions of missing entries.

5. CONCLUSION

We propose a clustering technique that can handle the pres-
ence of missing feature values. We derive theoretical guaran-
tees for the successful recovery of the clusters using the pro-
posed optimization problem. We also propose an algorithm
to efficiently solve a relaxation of the above problem. This
algorithm is demonstrated on simulated and real datasets. It
is observed that the proposed scheme can perform clustering
even in the presence of a large fraction of missing entries.
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