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ABSTRACT

Many one class SVM applications require online learningbégue
when time series data are encountered. Most of the existatads
for online SVM learning are based on C SVM without adapting th
constraint parameter dynamically as the number of traisamgples
increases. In such case the false alarm rate decreaseghehitéss
alarm rate increases gradually for one class SVM. In mosliapp
tions we prefer a relatively stable performance, espgrcih false
alarm rate. In order to solve that problem, we propose amenir-

The motivation of this paper is to develop an online one class
algorithm with stable performance as new samples are adéled.
cording to Neyman-Pearson Lemma, the most powerful hygathe
test is the one with minimum type Il error by given a level gpay
| error (significance level)[8]. For one class classificat{outliers
detection) paradigm, the type | error is the false alarm vieh
is usuallya user-given leveand the type Il error is the miss alarm
rate which we want to minimize. For one class SVM, as the enlin
learning continues, we want to keep a relatively stablel lef/&alse

sion of »-OCSVM. Experiments on toy and real datasets show tha@larm rate without increasing the miss alarm rate too much.

v-OCSVM is a good mean to target a given false alarm rate while

the AUC increases slowly as the number of new samples ineseas

Index Terms— Online learning, one class SVM, outliers de-
tection, constant false alarm rate

1. INTRODUCTION

Data-driven one class classification is mainly used foriexglde-
tection or anomaly detection. One class support vector mastiall
into this category, and there exits two typical types of apphes.
One is proposed by Tax and Duin [1], named as support vector do
ain description, which aims to find a hypersphere with mirinea
lume to enclose the data in feature space, the amount of digiaa w
the hypersphere is tuned by a parameteran alternative formu-

Three possible solutions may be used to solve the above pro-
blem: (1) adapt paramete&r according to the proportion of out-
liers; (2) adapt parametér according to the approximation relation
C = %; (3) develop an online.-OCSVM learning method with
fixed v as it gives an upper bound on the proportion of outl{@ars
upper bound to the training false alarm raf€je former two appro-
aches need two stages, one is the online procedure and greioth
the parameter adaptation which is not straightforwardhis paper,
by using the idea of detecting Lagrange parameters’ groapgdy
we propose an online version efOCSVM and we also compare it
with different possible approaches listed above.

2. DERIVATION FOR ONE CLASS SVM

Two kinds of formulation are mainly used for one class SVMg tn

lation [2] derived from two class SVM is also parameterizgd C-one class SVM@-OCSVM), which is formulated as:

(C-OCSVM). One disadvantage of this method is that the pammet

C is not related to intuitive interpretation such as the prtpo of
outliers in training data. The other one is introduced bydHaipf et
al. [3], known as’ one class support vector machinesgCSVM).
It finds an optimal hyperplane in feature space to separaeated
proportion of the data from the origin, and the selectiorapaater is
v which gives an upper bound on the fraction of outliers foinirey
data. Itis proved that these two approaches lead to the sznima
[3, 4], under build condition that satisfies the Gaussiaméder

In real applications, time series data are usually encoedtet-

her than batch mode data. Results may be assessed aftema gi

delay which enables to add the data to the training set inrdode
improve the detection function. For that type of situationline
learning algorithm is required rather than classical bageiining
mode. Typical online SVM methods [5, 6, 7] are proposed firstl
for two class classification. The idea is to follow the chanféa-
grange parameters as the weight of new sample increaséshenti
Karush-Kuhn-Tucker conditions are satisfied, this apgiazan be
applied to one class SVM situation [6, 7]. But these onlinglan
mentations do not adapt the constraint param@taccording to the

number of samples. Thus, for one class SVM, the false alaten ra

decreases and the miss alarm rate increases gradually msniier
of training samples increases.
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wC.gf 2 i=1

(1)
st (w9 p(xi)) > 1-€7, 67 >0,i=1,2,..,n.

Introducing the Lagrange multipliees®, then the solution is:

w = Z of p(xi), 2

\y(\_ghereqﬁ(xi) is an implicit mapping from the original space to the

Hilbert space. Then the dual problem can be cast as:
.1 c c c
Iilg1§§:al aj K(xzi,zj) — Zai
¥ [

st. 0<af <,

@)

whereK is kernel matrix withK (z;, ;) = (¢(x:), d(x;)).
The other one ig-one class SVMg-OCSVM)[3], which is for-
mulated as:

. 1 v2 1 = v
S Il + m;& p

s.t. <WU7¢(x’i)> Z p— 5;/7 gf 2 07/) Z 072 = 1727 ceey T

(4)
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As previously, the Lagrange multipliees” are introduced, then
=D _alo(x). ®)
Finally, the dual problem can be formalized as:
nolciun % Z oy af K(xi, ;)

S (6)
1. 0<a’ < —, v
S <« S Za

Let o o
WV = pw 752/ = p{z ) (7)
then (4) could be rewritten as:
min o (IwCIE - (3 - )
wC e p 2 nvp <— (8)

st (W o)) >1-&0, 60 >0,p>0,i=1,2,..,n
Notice that we have fixed solution effor givenv, if we setC =
ot then ther-OCSVM (8) andC-OCSVM (1) will lead to the
same solutich From (2), (5) and (7), we can conclude:

af = pay. ©)

. v . 1
Slncez'i Q; = 1! thenp - W

2t}

3. ONLINE LEARNING

Since we do not have a relatively stable false alarm raterfimeC-
OCSVM learning with fixed”, one possible solution is to develop
an online version of-OCSVM with fixed v (which gives an upper
bound to the training false alarm rate, usually it is a usegrgvalue
that indicates the tolerance on type | error) agves an upper bound
on the fraction of outliers.

3.1. The main problem

Let A, = {x4,7 = 1,...,n} be the training dataset with sam-

ples andx,,+1 is the new coming data sample. We can rewrite the

formulation of (4) as:

. (n+y)v 2 .
min ———||wl||” — (n+vy)vp+ i+ vEn
min === [w||* — (n +7)vp ;5 Vént1 10)
st (W, 0(x4)) > p—&i,& >0,p>0,0=1,...,n+1,

For one value ofy, we can get a corresponding solutiafi. Then
the decision function is defined g8 () = sign(f”(x)), where
f7(z) is the separating function:

n+1
() = n+’y ZoﬂK (x,%;) — p7, (23)
Wherep”Y = (n+1w)u Z:LJrll OﬂK(mivmj) Whenffy(xj) =0.Asa

consequence of KKT conditions,indexes can be partitioned into 3
sets which are piecewise linear preliminary developments.

e M={i:f"(xs) =0, a] €[0,1]},fori=1,...,n

o E={i: fM(xi) <0, o] =1}, fori=1,...,n

e C={i: f'(xs) >0, a] =0},fori=1,...,n
For the new coming dat&,,+1, we define:

e n+1eM,if f7(xn41) =0anda, , €[0,7].

e nt+1e&if f'(xns1) <O0anda] , =1.

e n+1eC,if f'(xn41) > 0anda, ,, =0.
Assuming the composition of the 3 groups does not change @s
[y~,~T] for given solutiona™  andp™~. Then according to (12):

Zak —&—Zak —I—Zak (n+~7)v, (14a)
kec keEM ke€
ZaZ—FZaZ—FZaZ:(n—FV)V (14b)
keC keM ke€
Let (14b)-(14a), then:
v —-1), n+1ef,
O S [
keM keM 7Y n :
Definea = (n + v)vp?, then (13) can be rewritten as:
v oy Nty N4y -
116 = 1166) = TR )+ T ()
1 n+1
_ T _ a7 )
- (TZ + ’Y)V ( Z(al Q; )K(X, X’L) (16)

1=1

I S (x)).

3.2. Determination ofa”

where~ changes from 0 to 1, which indicates the online learning| et f,, denotes the reduced kernel matrix with index elements in

procedure fromn to n + 1 samples. Whery = 1 the solution of
(10) is the same as that of (4) with+ 1 samples.
Introducing the Lagrange multipliers, we can get:

1 n+1
ik e ; aid(xi). (11)
Then the dual problem can be written as:
. 1
i R 2 oK ()
’ (12)

Z?ﬁl a; = (n+ 7).

For SVDD andv-OCSVM: C' = -L .

{0<o¢L <li=1,.,n,0< ans1 <,

M andap is the vector with Lagrange multipliers,, k € M.
When f7 (xn+1) > 0 (C) or f7(Xn+1) = 0 (M), forl € M,
we havef”(x;) = f7 (x;) = 0. According to (15) and (16):

{KM(a;/M —a;’\;) — (g —agi)l =0,

1" (aj —a)y) = (v =7 v -

= [0...0, 1], then (17) can be written as:

) = < “55 ) + (=7 v, (18)
Qo

wherev = A™ "c.
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When 7 (xn41) < 0 (€), similarly fori € M, f7(x;) =
7 (x;) = 0, according to (15) and (16), then:

{KMMA —ag) (e —ag )1 =07 = NKuntr,
1M} —al) = (=7 )v-1),

(19)
whereK v n1 = [K(Xiy, Xnt1), o K (X1 5y, Xn41), 0] . Intro-
ducing A andc, then:

(20)

3.3. Partition change detection

data with the minimum volume is the tightest one). The realldvo
datasets are ionosphere and handwritten digits data[@@dsphere
contains 225 positives, 126 negatives and with handwrdigits we
define 1,134 positives (digits 1,4) and 4,489 negatives dthers).
For online learning, the initial number of samples is 10 amdadd
them one by one. Both use 80% for training and 20% for testing.
Four possible methods are compared with the proposed omline
OCSVM learning. FoilC'-OCSVM with fixedC', two groups of re-
sults are given using two different valuesCiax andCiin. Where
Cmax corresponds to solutions with = 0.1 whenn is the initial
number of samples ar@min corresponds to that whenis the total
number of training samples. Another approachGe©CSVM is to
adaptC whenn increases. Two methods fall into this framework,
one is to tuneC' so that the proportion of outliers equals a chosen
valuep, noted a<’(p) (we choosep = 0.1 as the same to). The
other way is to adagf’ by using the approximation relati@n = %
The kernel parameter (Gaussian kernel) is chosen by setting. 1

As shown in (18) and (20)x” is a piecewise linear function of
~. The breakpoints correspond to partition change in accoela
to KKT conditions. LetAy = 4T — 4~ be the step, during the

which makes the proportion of outlier to be close to thatealu

5. RESULTS

online learning procedure, the following events need todieated.
For allk € M: the movement of candidate points frokt to C
indicates thaty} = 0. According to (18) and (20):

.
“2e n41¢EkeM,
Ay = i ¢
- n+1le& ke M.

up

(21)

The movement of candidate points frok to £ indicates thaty, =
1 except whem + 1 € M, whereo) | = ~*. Accordingly,

1—a)

w’; , n+leCor Mke M,k#n+1,
awi -y

Ay = %,n+1e/\4,k:n+1, (22)
1*@%7

i ntlefkeM

For allk € C: the movement of candidate points frafrto M
indicates that the separating function changes fifottx;) > 0 to
f7(x) = 0. According to (16), (18) and (20):

_ () (k)
[Kk,Mfl]E ’
(nty ) FT (k)

[K, pmo—1ut+ Ky pp1”’

n+1¢&keC,
Ay = (23)

n+1lec& kel

Whel’eKk,M:[K(Xk,Xl] ), ey K(Xk,XL‘M‘ )], Kk,vLJrl:K(Xk,Xn«H)-

For allk € &£: the movement of candidate points frafrto M
indicates that the separating function changes fifottx;) < 0 to

f7(xx) = 0. The corresponding equations are the same as (2

except thatf” (xx) < 0.
Then move toy™ according to the smallegt~y>0 until v = 1.

4. EXPERIMENTAL SETTINGS

Experiments are conducted on toy and real datasets regggcilihe

toy datasets are banana, square and spiral shaped dataj&, ave

Performances are evaluated by considering false alarm(fFate
miss alarm rate (MA), AUC curve and true alarm rate (TA) when
FA is enforced to 0.1 by tuning the threshold. The resultsaofama
and ionosphere data are shown in figure 2 and 3, the othergesap
reported in table 1. Figure 2 shows that the FA and MA of the@pro
sed learning/-OCSVM and the on€'-OCSVM by adapting” ac-
cording top are relative stable (FA0.1, MAx0.27) whem > 100.
While the methods using fixed' suffer a gradually decrease of FA
and increase of MA as increases. By adapting usingC' = %

the two type errors are relative stable but are very diffefiemm the
target value. For the curves of AUC and TA by enforcing FA50.1
the »-OCSVM andC-OCSVM(C(p)) are always at the top along
the online learning procedur&esults on ionosphere dataset (figure
3) show that the.-OCSVM converges faster to a stable FA value
than other methods. For measurements of MA, AUC and TA, all
methods reach similar results exc6pOCSVM(C = %).

Results of AUC and TA on other datasets are listed in table 1.
For square data, the performances-dCSVM,C-OCSVM(C(p)),
C-OCSVM(Chax) are almost the same, which are much better
than C-OCSVM(Cimin) and C-OCSVM(C = ). For spi-
ral data, the performances ofOCSVM, C-OCSVM(C(p)), C-
OCSVM(Cmax), C-OCSVM(Chin) are similar, which are much
better thanC-OCSVM(C = %). For digits data, the performan-
ces of »-OCSVM, C-OCSVM(C(p)), C-OCSVM(C = L), C-
OCSVM(Chwmin) are similar, which are better th&*OCSVM(Cinax)-

Upon above, we can conclude thaOCSVM,C-OCSVM(C'(p))

Iways tend to produce stable performances. Besides thahéit-
od C-OCSVM(C(p)) requires additional computation to sel&ctt
and change fronC'(n) to C'(n + 1) when adding a new sample,

which is not as efficient and direct asOCSVM.

6. CONCLUSION

In this paper, we proposed an online versionngdCSVM learning
in order to get a stable false alarm rate. We compare the iexpets

shown in figure 1. For each one, we use 1,000 samples forrtaini with four different methods: online learning with fixed and fixed

and 10,000 for testing. In order to test the miss alarm rad€)QD

negative uniform distribution samples are generated wisler the

v, online learning withC' adaptation according to training errpr
and according to the approximatioh= -L. Results show that the

ny’

maximum and minimum boundaries of the toy data. That meangroposed method using fixeds a good mean to target a given false

for given level of false alarm rate, we should choose thesdias

with the minimum miss alarm rate (one which encloses theitrgi

alarm rate and keep it relatively stableragcreases.
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Fig. 2. Banana data (a) false alarm rate, (b) miss alarm rate, (€,At) true alarm rate (FA=0.1).
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Fig. 3. lonosphere data (a) false alarm rate, (b) miss alarm t&UC, (d) true alarm rate (FA=0.1).

Table 1. AUC and TA (FA=0.1) .
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N. samples(%) AUC A
10% 20% 30% 50% 100% 10% 20% 30% 50% 100%

v 0.8036| 0.8125| 0.8131 0.8145 0.8169| 0.6228 0.6458| 0.6537 | 0.6649 0.6699

C(p) 0.8023 | 0.8124 | 0.8133 0.8151 0.8168| 0.6197 0.6465| 0.6530| 0.6643 0.6678

Square Chax 0.8036 | 0.8125| 0.8131 0.8143 0.8179| 0.6228 0.6458| 0.6537 | 0.6672 0.6698
Chin 0.7868 | 0.8067 | 0.8122 0.8151 0.8169| 0.5869 0.6356| 0.6530| 0.6642 0.6699

C= % 0.7656 | 0.7638 | 0.7767 0.7842 0.7930| 0.5448 0.5275| 0.5626| 0.5750 0.6074

v 0.8106 | 0.8247 | 0.8345 0.8355 0.8448| 0.6265 0.6515| 0.6797 | 0.6817 0.6998

C(p) 0.8102 | 0.8260| 0.8379 0.8388 0.8461| 0.6180 0.6585| 0.6866| 0.6841 0.7020

Spiral Chax 0.8106 | 0.8247 | 0.8345 0.8356 0.8429| 0.6265 0.6515| 0.6797 | 0.6818 0.6960
Chin 0.8005| 0.8281 | 0.8403 0.8386 0.8448| 0.5756 0.6636| 0.6894 | 0.6826 0.6998

= % 0.7661 | 0.7835| 0.8052 0.8174 0.8241| 0.5084 0.5641| 0.6063| 0.6382 0.6625

v 0.9379| 0.9395| 0.9465 0.9435 0.9434| 0.8625 0.8560| 0.8649| 0.8627 0.8658

C(p) 0.9463 | 0.9412| 0.9489 0.9457 0.9448| 0.8741 0.8598 | 0.8747 | 0.8734 0.8665

Digits Chax 0.9353 | 0.9258 | 0.9307 0.9226 0.9156| 0.8515 0.8411| 0.8415| 0.8152 0.7838
Chin 0.9416 | 0.9450 | 0.9508 0.9524 0.9434| 0.8049 0.8386| 0.8716| 0.8861 0.8658

C= - 0.9403| 0.9436 | 0.9511 0.9536 0.9532| 0.8310 0.8449| 0.8625| 0.8667 0.8807
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