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ABSTRACT
Many one class SVM applications require online learning technique
when time series data are encountered. Most of the existing methods
for online SVM learning are based on C SVM without adapting the
constraint parameter dynamically as the number of trainingsamples
increases. In such case the false alarm rate decreases whilethe miss
alarm rate increases gradually for one class SVM. In most applica-
tions we prefer a relatively stable performance, especially the false
alarm rate. In order to solve that problem, we propose an online ver-
sion ofν-OCSVM. Experiments on toy and real datasets show that
ν-OCSVM is a good mean to target a given false alarm rate while
the AUC increases slowly as the number of new samples increases.

Index Terms— Online learning, one class SVM, outliers de-
tection, constant false alarm rate

1. INTRODUCTION

Data-driven one class classification is mainly used for outliers de-
tection or anomaly detection. One class support vector machines fall
into this category, and there exits two typical types of approaches.
One is proposed by Tax and Duin [1], named as support vector dom-
ain description, which aims to find a hypersphere with minimal vo-
lume to enclose the data in feature space, the amount of data within
the hypersphere is tuned by a parameterC; an alternative formu-
lation [2] derived from two class SVM is also parameterized by C
(C-OCSVM). One disadvantage of this method is that the parameter
C is not related to intuitive interpretation such as the proportion of
outliers in training data. The other one is introduced by Schölkopf et
al. [3], known asν one class support vector machines (ν-OCSVM).
It finds an optimal hyperplane in feature space to separate a selected
proportion of the data from the origin, and the selection parameter is
ν which gives an upper bound on the fraction of outliers for training
data. It is proved that these two approaches lead to the same solution
[3, 4], under build condition that satisfies the Gaussian kernel.

In real applications, time series data are usually encountered rat-
her than batch mode data. Results may be assessed after a given
delay which enables to add the data to the training set in order to
improve the detection function. For that type of situation,online
learning algorithm is required rather than classical batchlearning
mode. Typical online SVM methods [5, 6, 7] are proposed firstly
for two class classification. The idea is to follow the changeof La-
grange parameters as the weight of new sample increases until the
Karush-Kuhn-Tucker conditions are satisfied, this approach can be
applied to one class SVM situation [6, 7]. But these online imple-
mentations do not adapt the constraint parameterC according to the
number of samples. Thus, for one class SVM, the false alarm rate
decreases and the miss alarm rate increases gradually as thenumber
of training samples increases.
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The motivation of this paper is to develop an online one class
algorithm with stable performance as new samples are added.Ac-
cording to Neyman-Pearson Lemma, the most powerful hypothesis
test is the one with minimum type II error by given a level of type
I error (significance level)[8]. For one class classification (outliers
detection) paradigm, the type I error is the false alarm ratewhich
is usuallya user-given leveland the type II error is the miss alarm
rate which we want to minimize. For one class SVM, as the online
learning continues, we want to keep a relatively stable level of false
alarm rate without increasing the miss alarm rate too much.

Three possible solutions may be used to solve the above pro-
blem: (1) adapt parameterC according to the proportion of out-
liers; (2) adapt parameterC according to the approximation relation
C = 1

nν
; (3) develop an onlineν-OCSVM learning method with

fixed ν as it gives an upper bound on the proportion of outliers(an
upper bound to the training false alarm rate). The former two appro-
aches need two stages, one is the online procedure and the other is
the parameter adaptation which is not straightforward. In this paper,
by using the idea of detecting Lagrange parameters’ group change,
we propose an online version ofν-OCSVM and we also compare it
with different possible approaches listed above.

2. DERIVATION FOR ONE CLASS SVM

Two kinds of formulation are mainly used for one class SVM, one is
C-one class SVM (C-OCSVM), which is formulated as:

min
w

C ,ξC
i

1

2
‖wC‖2 +C

n
∑

i=1

ξCi

s.t. 〈wC , φ(xi)〉 ≥ 1− ξCi , ξCi ≥ 0, i = 1, 2, ..., n.

(1)

Introducing the Lagrange multipliersαC , then the solution is:

w
C =

∑

i

αC
i φ(xi), (2)

whereφ(xi) is an implicit mapping from the original space to the
Hilbert space. Then the dual problem can be cast as:

min
α

C

1

2

∑

i,j

αC
i α

C
j K(xi,xj)−

∑

i

αC
i

s.t. 0 ≤ αC
i ≤ C,

(3)

whereK is kernel matrix withK(xi,xj) = 〈φ(xi), φ(xj)〉.
The other one isν-one class SVM (ν-OCSVM)[3], which is for-

mulated as:

min
w

ν ,ξν
i
,ρ

1

2
‖wν‖2 +

1

νn

n
∑

i=1

ξνi − ρ

s.t. 〈wν , φ(xi)〉 ≥ ρ− ξνi , ξ
ν
i ≥ 0, ρ ≥ 0, i = 1, 2, ..., n.

(4)
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As previously, the Lagrange multipliersαν are introduced, then

w
ν =

∑

i

αν
i φ(xi). (5)

Finally, the dual problem can be formalized as:

min
α

ν

1

2

∑

i,j

αν
i α

ν
jK(xi,xj)

s.t. 0 ≤ αν
i ≤

1

nν
,
∑

i

αν
i = 1.

(6)

Let
w

ν = ρwC , ξνi = ρξCi , (7)

then (4) could be rewritten as:

min
w

C ,ξC
i

,ρ

ρ2
(

1

2
‖wC‖2 +

1

nνρ
(

n
∑

i=1

ξCi − 1)

)

s.t. 〈wC , φ(xi)〉 ≥ 1− ξCi , ξCi ≥ 0, ρ ≥ 0, i = 1, 2, ..., n.

(8)

Notice that we have fixed solution ofρ for givenν, if we setC =
1

nνρ
, then theν-OCSVM (8) andC-OCSVM (1) will lead to the

same solution1. From (2), (5) and (7), we can conclude:

αν
i = ραC

i . (9)

Since
∑

i
αν
i = 1, thenρ = 1

∑
i αC

i

.

3. ONLINE LEARNING

Since we do not have a relatively stable false alarm rate for onlineC-
OCSVM learning with fixedC, one possible solution is to develop
an online version ofν-OCSVM with fixed ν (which gives an upper
bound to the training false alarm rate, usually it is a user-given value
that indicates the tolerance on type I error) as itgives an upper bound
on the fraction of outliers.

3.1. The main problem

Let An = {xi, i = 1, ..., n} be the training dataset withn sam-
ples andxn+1 is the new coming data sample. We can rewrite the
formulation of (4) as:

min
w,ξ,ρ

(n+ γ)ν

2
‖w‖2 − (n+ γ)νρ+

n
∑

i=1

ξi + γξn+1

s.t. 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0, i = 1, ..., n+ 1,

(10)

whereγ changes from 0 to 1, which indicates the online learning
procedure fromn to n + 1 samples. Whenγ = 1 the solution of
(10) is the same as that of (4) withn+ 1 samples.

Introducing the Lagrange multipliersα, we can get:

w =
1

(n+ γ)ν

n+1
∑

i=1

αiφ(xi). (11)

Then the dual problem can be written as:

min
α

1

2(n+ γ)ν

∑

i,j

αiαjK(xi,xj)

s.t.

{

0 ≤ αi ≤ 1, i = 1, ..., n, 0 ≤ αn+1 ≤ γ,
∑n+1

i=1 αi = (n+ γ)ν.

(12)

1For SVDD andν-OCSVM:C =
1
nν

.

For one value ofγ, we can get a corresponding solutionαγ . Then
the decision function is defined asgγ(x) = sign(fγ(x)), where
fγ(x) is the separating function:

fγ(x) =
1

(n+ γ)ν

n+1
∑

i=1

αγ
i K(x,xi)− ργ , (13)

whereργ = 1
(n+γ)ν

∑n+1
i=1 αγ

i K(xi,xj) whenfγ(xj) = 0. As a
consequence of KKT conditions,n indexes can be partitioned into 3
sets which are piecewise linear preliminary developments.

• M = {i : fγ(xi) = 0, αγ
i ∈ [0, 1]}, for i = 1, ..., n.

• E = {i : fγ(xi) < 0, αγ
i = 1}, for i = 1, ..., n.

• C = {i : fγ(xi) > 0, αγ
i = 0}, for i = 1, ..., n.

For the new coming dataxn+1, we define:

• n+ 1 ∈ M, if fγ(xn+1) = 0 andαγ
n+1 ∈ [0, γ].

• n+ 1 ∈ E , if fγ(xn+1) < 0 andαγ
n+1 = γ.

• n+ 1 ∈ C, if fγ(xn+1) > 0 andαγ
n+1 = 0.

Assuming the composition of the 3 groups does not change asγ ∈

[γ−, γ+] for given solutionαγ−

andρ−. Then according to (12):















∑

k∈C

αγ−

k +
∑

k∈M

αγ−

k +
∑

k∈E

αγ−

k = (n+ γ−)ν, (14a)

∑

k∈C

αγ
k +

∑

k∈M

αγ
k +

∑

k∈E

αγ
k = (n+ γ)ν. (14b)

Let (14b)-(14a), then:

∑

k∈M

αγ
k −

∑

k∈M

αγ−

k =

{

(γ − γ−)(ν − 1), n+ 1 ∈ E ,

(γ − γ−)ν, n+ 1 /∈ E .
(15)

Defineαγ
0 = (n+ γ)νργ , then (13) can be rewritten as:

fγ(x) = fγ(x)−
n+ γ−

n+ γ
fγ−

(x) +
n+ γ−

n+ γ
fγ−

(x)

=
1

(n+ γ)ν

( n+1
∑

i=1

(αγ
i − αγ−

i )K(x,xi)

− (αγ
0 − αγ−

0 ) + (n+ γ−)νfγ−

(x)

)

.

(16)

3.2. Determination ofαγ

Let KM denotes the reduced kernel matrix with index elements in
M andαM is the vector with Lagrange multipliersαk, k ∈ M.

Whenfγ(xn+1) > 0 (C) or fγ(xn+1) = 0 (M), for l ∈ M,

we havefγ(xl) = fγ−

(xl) = 0. According to (15) and (16):
{

KM(αγ
M

−α
γ−

M
)− (αγ

0 −α
γ−

0 )1 = 0,

1
T (αγ

M
−α

γ−

M
) = (γ − γ−)ν.

(17)

LetA =

[

KM −1

−1
T 0

]

, cT = [0...0, 1], then (17) can be written as:

(

α
γ
M

αγ
0

)

=

(

α
γ−

M

αγ−

0

)

+ (γ − γ−)νv, (18)

wherev = A−1
c.
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When fγ(xn+1) < 0 (E), similarly for l ∈ M, fγ(xl) =

fγ−

(xl) = 0, according to (15) and (16), then:
{

KM(αγ
M

−α
γ−

M
)− (αγ

0 −α
γ−

0 )1 = (γ− − γ)KM,n+1,

1
T (αγ

M
−α

γ−

M
) = (γ − γ−)(ν − 1),

(19)
whereKM,n+1 = [K(xl1 ,xn+1), ..., K(xl|M|

,xn+1), 0]
T . Intro-

ducingA andc, then:

(

α
γ
M

αγ
0

)

=

(

α
γ−

M

αγ−

0

)

+ (γ − γ−)u, (20)

whereu = A−1 ((ν − 1)c−KM,n+1).

3.3. Partition change detection

As shown in (18) and (20),αγ is a piecewise linear function of
γ. The breakpoints correspond to partition change in accordance
to KKT conditions. Let∆γ = γ+ − γ− be the step, during the
online learning procedure, the following events need to be detected.

For allk ∈ M: the movement of candidate points fromM to C
indicates thatαγ

k = 0. According to (18) and (20):

∆γk =











−
α
γ−

k

νvk
, n+ 1 /∈ E , k ∈ M,

−
α
γ−

k

uk
, n+ 1 ∈ E , k ∈ M.

(21)

The movement of candidate points fromM to E indicates thatαγ
k =

1 except whenn+ 1 ∈ M, whereαγ
n+1 = γ+. Accordingly,

∆γk =























1−α
γ−

k

νvk
, n+ 1 ∈ C or M, k ∈ M, k 6= n+ 1,

α
γ−

n+1
−γ−

1−νvn+1
, n+ 1 ∈ M, k = n+ 1,

1−α
γ−

k

uk
, n+ 1 ∈ E , k ∈ M.

(22)

For all k ∈ C: the movement of candidate points fromC to M
indicates that the separating function changes fromfγ(xk) > 0 to
fγ(xk) = 0. According to (16), (18) and (20):

∆γk =







− (n+γ−)fγ−
(xk)

[Kk,M,−1]v
, n+ 1 /∈ E , k ∈ C,

− (n+γ−)fγ−
(xk)

[Kk,M,−1]u+Kk,n+1
, n+ 1 ∈ E , k ∈ C,

(23)

whereKk,M=[K(xk,xl1), ..., K(xk,xl|M|
)],Kk,n+1=K(xk,xn+1).

For all k ∈ E : the movement of candidate points fromE to M
indicates that the separating function changes fromfγ(xk) < 0 to
fγ(xk) = 0. The corresponding equations are the same as (23)

except thatfγ−

(xk) < 0.
Then move toγ+ according to the smallest∆γ>0 until γ+ = 1.

4. EXPERIMENTAL SETTINGS

Experiments are conducted on toy and real datasets respectively. The
toy datasets are banana, square and spiral shaped data[9], which are
shown in figure 1. For each one, we use 1,000 samples for training
and 10,000 for testing. In order to test the miss alarm rate, 10,000
negative uniform distribution samples are generated whichcover the
maximum and minimum boundaries of the toy data. That means
for given level of false alarm rate, we should choose the classifier
with the minimum miss alarm rate (one which encloses the training

data with the minimum volume is the tightest one). The real world
datasets are ionosphere and handwritten digits data[10]. Ionosphere
contains 225 positives, 126 negatives and with handwrittendigits we
define 1,134 positives (digits 1,4) and 4,489 negatives (theothers).
For online learning, the initial number of samples is 10 and we add
them one by one. Both use 80% for training and 20% for testing.
Four possible methods are compared with the proposed onlineν-

OCSVM learning. ForC-OCSVM with fixedC, two groups of re-
sults are given using two differentC valuesCmax andCmin. Where
Cmax corresponds to solutions withν = 0.1 whenn is the initial
number of samples andCmin corresponds to that whenn is the total
number of training samples. Another approach forC-OCSVM is to
adaptC whenn increases. Two methods fall into this framework,
one is to tuneC so that the proportion of outliers equals a chosen
valuep, noted asC(p) (we choosep = 0.1 as the same toν). The
other way is to adaptC by using the approximation relationC = 1

nν
.

The kernel parameter (Gaussian kernel) is chosen by settingν = 0.1
which makes the proportion of outlier to be close to that value.

5. RESULTS

Performances are evaluated by considering false alarm rate(FA),
miss alarm rate (MA), AUC curve and true alarm rate (TA) when
FA is enforced to 0.1 by tuning the threshold. The results of banana
and ionosphere data are shown in figure 2 and 3, the other groups are
reported in table 1. Figure 2 shows that the FA and MA of the propo-
sed learningν-OCSVM and the oneC-OCSVM by adaptingC ac-
cording top are relative stable (FA≈0.1, MA≈0.27) whenn > 100.
While the methods using fixedC suffer a gradually decrease of FA
and increase of MA asn increases. By adaptingC usingC = 1

nν
,

the two type errors are relative stable but are very different from the
target value. For the curves of AUC and TA by enforcing FA=0.1,
the ν-OCSVM andC-OCSVM(C(p)) are always at the top along
the online learning procedure.Results on ionosphere dataset (figure
3) show that theν-OCSVM converges faster to a stable FA value
than other methods. For measurements of MA, AUC and TA, all
methods reach similar results exceptC-OCSVM(C = 1

nν
).

Results of AUC and TA on other datasets are listed in table 1.
For square data, the performances ofν-OCSVM,C-OCSVM(C(p)),
C-OCSVM(Cmax) are almost the same, which are much better
than C-OCSVM(Cmin) and C-OCSVM(C = 1

nν
). For spi-

ral data, the performances ofν-OCSVM, C-OCSVM(C(p)), C-
OCSVM(Cmax), C-OCSVM(Cmin) are similar, which are much
better thanC-OCSVM(C = 1

nν
). For digits data, the performan-

ces ofν-OCSVM, C-OCSVM(C(p)), C-OCSVM(C = 1
nν

), C-
OCSVM(Cmin) are similar, which are better thanC-OCSVM(Cmax).

Upon above, we can conclude thatν-OCSVM,C-OCSVM(C(p))
always tend to produce stable performances. Besides that the met-
hodC-OCSVM(C(p)) requires additional computation to selectC
and change fromC(n) to C(n + 1) when adding a new sample,
which is not as efficient and direct asν-OCSVM.

6. CONCLUSION

In this paper, we proposed an online version ofν-OCSVM learning
in order to get a stable false alarm rate. We compare the experiments
with four different methods: online learning with fixedC and fixed
ν, online learning withC adaptation according to training errorp
and according to the approximationC = 1

nν
. Results show that the

proposed method using fixedν is a good mean to target a given false
alarm rate and keep it relatively stable asn increases.

2823



 

 

−2 −1 0 1 2 3

−2

−1

0

1

2 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(a)

 

 

−2 −1 0 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(b)

 

 

−10 −5 0 5 10

−10

−5

0

5

10

15

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(c)

Fig. 1. Contours on toy datasets (n=1,000): (a) banana (σ = 1.06), (b) square (σ = 0.3), (c) spiral (σ = 1.5).
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Fig. 2. Banana data (a) false alarm rate, (b) miss alarm rate, (c) AUC, (d) true alarm rate (FA=0.1).
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Fig. 3. Ionosphere data (a) false alarm rate, (b) miss alarm rate, (c) AUC, (d) true alarm rate (FA=0.1).

Table 1. AUC and TA (FA=0.1) .

N. samples(%)
AUC TA

10% 20% 30% 50% 100% 10% 20% 30% 50% 100%

Square

ν 0.8036 0.8125 0.8131 0.8145 0.8169 0.6228 0.6458 0.6537 0.6649 0.6699
C(p) 0.8023 0.8124 0.8133 0.8151 0.8168 0.6197 0.6465 0.6530 0.6643 0.6678
Cmax 0.8036 0.8125 0.8131 0.8143 0.8179 0.6228 0.6458 0.6537 0.6672 0.6698
Cmin 0.7868 0.8067 0.8122 0.8151 0.8169 0.5869 0.6356 0.6530 0.6642 0.6699
C = 1

nν
0.7656 0.7638 0.7767 0.7842 0.7930 0.5448 0.5275 0.5626 0.5750 0.6074

Spiral

ν 0.8106 0.8247 0.8345 0.8355 0.8448 0.6265 0.6515 0.6797 0.6817 0.6998
C(p) 0.8102 0.8260 0.8379 0.8388 0.8461 0.6180 0.6585 0.6866 0.6841 0.7020
Cmax 0.8106 0.8247 0.8345 0.8356 0.8429 0.6265 0.6515 0.6797 0.6818 0.6960
Cmin 0.8005 0.8281 0.8403 0.8386 0.8448 0.5756 0.6636 0.6894 0.6826 0.6998
C = 1

nν
0.7661 0.7835 0.8052 0.8174 0.8241 0.5084 0.5641 0.6063 0.6382 0.6625

Digits

ν 0.9379 0.9395 0.9465 0.9435 0.9434 0.8625 0.8560 0.8649 0.8627 0.8658
C(p) 0.9463 0.9412 0.9489 0.9457 0.9448 0.8741 0.8598 0.8747 0.8734 0.8665
Cmax 0.9353 0.9258 0.9307 0.9226 0.9156 0.8515 0.8411 0.8415 0.8152 0.7838
Cmin 0.9416 0.9450 0.9508 0.9524 0.9434 0.8049 0.8386 0.8716 0.8861 0.8658
C = 1

nν
0.9403 0.9436 0.9511 0.9536 0.9532 0.8310 0.8449 0.8625 0.8667 0.8807
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