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ABSTRACT

It is required that input features are represented as vectors
or scalars in machine learning for classification, e.g. sup-
port vector machine (SVM). However, real world data such
as 2D images is naturally represented as matrices or tensors
with higher dimensions. Thus, structural information of the
data whose dimensions are more than two is not successful-
ly considered. One typical structural information which is
useful for the classification task is the spatial relationship of
the nearby data points. In this paper, to leverage this kind
of structural information, we propose a novel classification
method which combines total variational (TV) regularization
with SVM, called TV-SVM. Since TV achieves a local s-
moothing property by penalizing the local discontinuity of da-
ta, TV-SVM preserves better local structure than the original
SVM due to TV regularization. We solve the objective func-
tion of TV-SVM via the alternating direction method of mul-
tipliers (ADMM) algorithm. Experimental results on image
classification show that TV-SVM is competitive to the state-
of-the-art learning method in both classification accuracy and
computational complexity.

Index Terms— Classification, machine learning, support
vector machine, structural information, total variation

1. INTRODUCTION

Data classification is a basic problem in the field of machine
learning. A large amount of classification methods have been
developed for this problem. Most of the classification meth-
ods, such as support vector machines [1] (SVM) and decision
trees [2], have been proposed in the case that the inputs are
represented as vectors. However, many real world data is nat-
urally represented as matrices or even tensors with higher di-
mensions. One typical example is image data. Gray images
are represented as matrices, while color images can be regard-
ed as three-dimensional tensors. When we deal with the clas-
sification problem in gray images via classical methods such
as SVM, we reshape the input vectors with a matrix form.
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However, the structural information, especially the spatial re-
lations of nearby data points in images [3], would be ignored
during this process. Several methods have been proposed to
deal with this issue over the past decade. In this work, we
focus on the classification methods based on classical SVM.
Roughly speaking, these methods regard the regression coef-
ficients W as a matrix, and introduce new constraints or reg-
ularization of W based on some matrix properties to leverage
the spatial corrections of input matrices. Wolf et al.[3] pro-
posed rank-k SVM whose regression matrix is modeled as the
sum of k rank-one matrices. Pirsiavash et al. [4] proposed a
bilinear SVM (B-SVM) whose regression matrix is factorized
into two low rank matrices. Recently, Luo et al. [5] proposed
support matrix machine (SMM) which adds the nuclear nor-
m of the regression matrix as a regularization term for SVM
since the nuclear norm is a good approximation of matrix
rank[6]. They are based on a similar assumption that the in-
put matrices are low rank matrices, i.e. their rows or columns
are highly correlated. However, the direct use of the low rank
assumption in 2D data, especially natural images, may suf-
fer problems [7]. Image data is correlated in arbitrary angles
including the horizontal or vertical direction. A horizontal s-
traight line is one rank, but when we rotate it into some other
angles, e.g. 45◦, its rank would be increased. Thus, the rank
of matrix is sensitive to rotations while image classification is
required to be rotation invariant. To handle this problem, we
propose a novel classification method for 2D data, called TV-
SVM. We add total variation (TV) of the regression matrix
into SVM as a regularization term based on the local smooth-
ness assumption. TV regularization term penalizes local dis-
continuity of a matrix [8]. TV can also be regarded as L1

norm of the regression matrix in the transformed domain (See
Section 2.2). Thus, the proposed TV-SVM achieves sparse-
ness of the regression matrix in the gradient domain since L1

norm is a commonly used regularization term for sparse rep-
resentation. Since the objective function of TV-SVM is con-
vex but not smooth, it is optimized via an alternating direction
method of multipliers (ADMM) [9]. Specifically, we devel-
op an iteration algorithm for its optimization based on a fast
version of ADMM [10]. Experimental results on three im-
age classification data sets (INRIA Annotations for Graz-02
(IG02), CIFAR-10 and INRIA person) demonstrate that TV-
SVM is competitive to SMM, i.e. the state-of-the-art method,
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in both classification accuracy and computational complexity.

2. RELATED WORK

2.1. Support Vector Machine

We give the notation and formulation of Support vector ma-
chine (SVM) which contanis a hinge loss function and a L2

regularization. Given a set of training data {xi, yi}ni=1, where
xi ∈ Rd is the ith input and yi ∈ {−1, 1} is its class label. If
the input data is represented as matrices, we need to convert
the input data into vectors to use SVM. SVM is formulated as
follows:

min
w,b

1

2
wTw + C

n∑
i=1

[1− yi(wTxi + b)]+ (1)

where w ∈ Rd and b are regression coefficients, C is a hyper
parameter of the regularization term, and [x]+is the hinge loss
function.

2.2. Total Variation

The concept of total variation (TV) has a very long history,
and it had been first proposed as a norm for 2D signal [8] in
1992. In this work, we use one of variations for a 2D discrete
signal of the original TV-norm as follows:

LTV (X) =
∑
i,j

|Xi+1,j −Xi,j |+ |Xi,j+1 −Xi,j | (2)

where X ∈ Rm×n is a matrix. LTV can be also represented
as linear operators combined with standard L1 norm. Specif-
ically, we stack the matrix X into its corresponding vector
x ∈ RN where N equals to m × n and construct two spe-
cial sparse matrices Dx,Dy ∈ RN×N , called 2D forward dif-
ferentiation operators in the x- and y-directions, respectively,
i.e. Dx ∈ {0, 1,−1}N×N . There are up to 2 non-zero ele-
ments on each row of Dx (the one is 1, while the other is−1).
The positions of the non-zero elements depend on the pairs
of neighbors in the x-direction of the input matrix X. Dy is
constructed in the same way except that the positions of it-
s non-zero elements depend on the pairs of neighbors in the
y-direction 1. In this way, the spatial information of X is pre-
served in Dx and Dy even when X is reshaped into a vector.
Then, (2) is represented as follows:

LTV (X) = ‖Dxx‖1 + ‖Dyx‖1 (3)

For simplicity, let D = [Dx;Dy], i.e. the concatenation of
rows, then (3) is rewritten as follows:

LTV (X) = ‖Dx‖1 (4)

1Our MATLAB code is available at
https://github.com/zzd1992/Differentiation-Operators

2.3. Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) blend-
s the decomposability of dual ascent with the convergence
property of the method of multipliers [9] as follows:

min f(x) + g(z) st. Ax+Bz = c (5)

with x ∈ Rn, z ∈ Rm,A ∈ Rp×n,B ∈ Rp×mand c ∈ Rp.
The objective function is separated into two parts, called f
and g, and both of them are required to be convex. As in the
method of multipliers, the scaled augmented Lagrangian is
represented as follows:

Lρ(x, z, u) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ u‖22 (6)

The general iterations of ADMM are as follows:

xk+1 = argmin
x
Lρ(x, z

k, uk) (7)

zk+1 = argmin
z
Lρ(x

k+1, z, uk) (8)

uk+1 = uk + ρ(Axk+1 +Bzk+1 − c) (9)

3. SUPPORT VECTOR MACHINE WITH TOTAL
VARIATIONAL REGULARIZATION

3.1. Problem Formulation

Given a set of training data {Xi, yi}ni=1, where Xi ∈ Rm×n is
the ith sample formed as a matrix and yi ∈ {−1, 1} is its cor-
responding label. W ∈ [R]

m×n and b ∈ R are the regression
matrix and bias, respectively, which are to be learned. With-
out reshaping the inputs into vectors, the original formulation
of SVM is rewritten as follows:

min
W,b

1

2
tr(WTW) + C

n∑
i=1

[1− yi(tr(WTXi) + b)]+ (10)

It is obvious that (10) is equivalent to (1). To take the advan-
tage of the local smooth assumption and restrain the regres-
sion matrix W to be sparse in the gradient domain, we add TV
regularization of W into SVM. Thus, TV-SVM is represented
as follows:

min
W,b

1

2
tr(WTW) + τLTV (W)

+ C

n∑
i=1

[1− yi(tr(WTXi) + b)]+ (11)

where LTV is TV norm defined in (2) and τ is a hyper param-
eter which determines the degree of TV regularization. Note
that when τ = 0, TV-SVM is equivalent to SVM defined in
(10). Recall that LTV is represented as a vectorized form of
the input matrix by introducing forward differentiation opera-
tors (See (3) and (4)). Thus, TV-SVM can also be represented
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as a vectorized form. Stack Xi and W into vectors xi and w
respectively. Eq. (11) is rewritten as follows:

min
w,b

1

2
wTw + τ |Dw|1 + C

n∑
i=1

[1− yi(wTxi + b)]+ (12)

3.2. Learning Algorithm

Since the objective function of TV-SMM is convex and non-
smooth, we develop a learning algorithm based on a fast ver-
sion of ADMM[10]. For simplicity, we derive the solution
based on the vectorized form of TV-SMM, i.e. (12). Problem
(12) is equivalent to the following equation:

arg min
w,b,z

f(w, b) + g(z) s.t. z −Dw = 0 (13)

where f(w, b) =
1

2
wTw+C

∑n
i=1[1− yi(wTxi + b)]+ and

g(z) = τ |Dx|1. Then, the scaled augmented Lagrangian
function of (13) is:

Lρ(x, z, u) = f(w, b) + g(z) +
ρ

2
‖z −Dw + u‖22 (14)

In ADMM, variables are divided into two parts, i.e. (w, b)
and z. Thus, problem (14) is divided into the following two
subproblems:

argmin
w,b

f(w, b) +
ρ

2
‖z − w + u‖22 (15)

argmin
z

g(z) +
ρ

2
‖z − w + u‖22 (16)

The solution of subproblem (15) is:

w∗ =
1

1 + ρ
(ρz + ρu+

n∑
i=1

α∗i yixi) (17)

b∗ =
1

|S|
∑
i∈S
{yi − (w∗)Txi}

where S = {i : 0 < α∗ < C} and α∗ is the solution of the
following constraint quadratic programming problem:

argmax
α
−1

2
αKα+ qTα (18)

s.t. 0 � α � C,
n∑
i=1

yiαi = 0

where K ∈ Rn×n and Kij =
yiyjx

T
i xj

1 + ρ
; q ∈ Rn and

qi = 1 − ρyi(z + u)Txi
1 + ρ

. The subproblem (16) is a stan-

dard 2D-TV problem. Many methods have been proposed for
solving this kind of problem. In this work, we solve (16) vi-
a an optimized taut-string method proposed by [11] which is

Algorithm 1 Fast ADMM for TV-SVM
Initialize z−1 = z̃0, u−1 = ũ0, ρ = 1, t1 = 1, c0 = 0 and
η ∈ (0, 1)
for k = 1, 2, 3... do

(wk, bk) = argmin
w,k

f(w, b) +
ρ

2
‖z̃k − w + ũk‖22

zk = argmin
z
g(z) +

ρ

2
‖z − wk + ũk‖22

uk = uk + ρ(zk − wk)
ck = 1

ρ‖u
k − ũk‖22 + ρ‖zk − z̃k‖22

if ck < ηck−1 then

tk+1 =
1 +

√
1 + 4(tk)2

2

z̃k+1 = zk +
tk − 1

tk+1
(zk − zk−1)

ũk+1 = uk +
tk − 1

tk+1
(uk − uk−1)

else
tk+1 = 1
z̃k+1 = zk−1, ũk+1 = uk−1

ck =
ck−1

η
end if

end for

Table 1. Three data sets for experiments
Data set #Positive #Negtive Dimension

IG02: Car & Bike 420 365 90× 120

CIFAR-10: Airplane & Bird 1005 1032 32× 32

INRIA person 902 1212 160× 96

the fastest method to solve Lasso. Its main idea for solving
subproblem (16) is that TV of a 2D signal is decomposed into
sum of TV of 1D signals. Specifically, TV of an m×n signal
is decomposed into TV sum of m 1D signals with length n
and n 1D signals with length m. Then, each 1D TV regular-
izer can be solved independently via the taut-string method.
The computation complexity for solving each 1D TV regu-
larizer is O(N2) in theory where N is the length of the input
signal. However, in practice, its computation complexity is
close to O(N) [12], and thus the computation complexity for
solving (16) via the optimized taut-string method is O(mn2)
(Suppose m ≤ n).

The learning alrorithm based on ADMM for our TV-SVM
is summarized in Algorithm 1. Since objective function of
TV-SVM is convex, the convergence of Algorithm 1 is guar-
anteed and the global optimal solution is promised based on
the theoretical results in [9] [10].

4. EXPERIMENTAL RESULTS

To verify the superiority of TV-SVM, we perform experi-
ments on three image classification data sets: INRIA anno-
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Table 2. Training time (unit: second) and classification accuracy (unit: %) on three data sets

Method
INRIA person CIFAR-10: Airplane & Bird IG02: Car & Bike

Time Accuracy Time Accuracy Time Accurcy
L-SVM - 80.12(1.71) - 67.60(1.69) - 72.91(2.32)
SMM 42.21(7.23) 81.98(1.15) 15.40(10.53) 68.62(1.58) 11.62(4.53) 73.68(3.61)

TV-SVM 42.87(7.29) 82.99(0.43) 14.79(10.88) 68.23(1.90) 11.80(4.37) 73.86(2.62)
Time and accuracy are represented by the form of ”average(standard deviation)”, and bold numbers represent the best average performance.

tations for Graz-02 (IG02)2, CIFAR-10 [13], and INRIA per-
son 3. We compare the performance of TV-SVM with those of
the standard linear SVM (L-SVM) [1] and SMM [4]. Experi-
ments are preformed using Matlab R2014b on a PC with Inter
i7-4790 CPU 3.60GHz (8 cores), 16GB RAM in ubuntu 14.04
system. IG02 is a re-edition of the popular natural-scene ob-
ject category data set made by Graz University of Technolo-
gy. We select two subsets of IG02: Car and Bike. We resize
the original images into 90 × 120, and then set Car as pos-
itive samples and Bike as negative samples. CIFAR-10 data
set is labeled subsets with 80 million tiny images collected
by Krizhevsky et al. We use first 10,000 training samples of
CIFAR-10 data set, and then set Airplane as positive samples
and Bird as negative samples because this pair of contents
is a little more difficult to classify. INRIA person data set
has been collected to detect whether people exist in an image.
We resize the images into 160 × 96. Note that we only use
the normalized gray images of three date sets as input fea-
tures without any other preprocessing. Table 1 summarizes
the information of three data sets including the numbers and
dimensions of input samples. In each data set, we random-
ly select 70% samples for training and the rest for testing.
We select the hyper parameters, i.e. (C, τ), by cross valida-
tion. For each (C, τ) pair, we run both TV-SVM and SMM
10 times to calculate the mean and standard deviations of the
classification accuracy and training time. The results are sum-
marized in Table 2. It can be observed that TV-SVM is com-
petitive to SMM, i.e. the state-of-the-art method, in both clas-
sification accuracy and computational complexity. Specifical-
ly, the classification accuracy of TV-SVM is higher than that
of SMM on IG02 and INRIA person data sets. In CIFAR-
10, TV-SVM is inferior to SMM in classification accuracy,
but still outperforms L-SVM. The computation complexity of
TV-SVM and SMM are nearly the same. Normalized regres-
sion matrices of L-SVM, SMM, and TV-SVM, i.e. w, learned
from CIFAR-10 data set are shown in Fig. 1. It can be ob-
served that w of SMM and TV-SVM is more regular than w
of L-SVM. Specifically, the regression matrix of SMM in Fig.
1(b) has strong row corrections while the regression matrix of
TV-SMM in Fig. 1(c) is very smooth and its boundaries be-
tween blocks are obvious. These phenomenons are consistent
with theoretical analysis. This is because SMM is based on
the low rank assumption and TV-SVM is mainly based on

2http://lear.inrialpes.fr/people/marszalek/data/ig02/
3http://pascal.inrialpes.fr/data/human/

(a) (b) (c)

Fig. 1. Normalized regression matrices learned from CIFAR-
10 data set. (a) L-SVM. (b) SMM. (c) TV-SVM.

the local smoothness and gradient sparse assumption, while
L-SVM has no extra constraint to w except L2 norm. Al-
though we evaluate TV-SVM on 2D data sets, it is easy to
extend TV-SVM to higher dimensional data because the opti-
mized taut-string method [11] can handle higher dimensional
TV problems. However, SMM is not easy to be generalized
to higher dimensional input data because SMM involves sin-
gular value decomposition of the regression matrix.

5. CONCLUSIONS

In this paper, we have proposed TV-SVM for data classifica-
tion. To leverage the local smoothness and gradient sparse
properties of input 2D data, TV-SVM introduces TV regular-
ization of the regression matrix into the standard L-SVM. We
have derived an iteration algorithm based on the fast ADM-
M to solve TV-SVM. We have verified the superiority of TV-
SVM on three image classification data sets. Experimental re-
sults demonstrate that TV-SVM consistently performs better
than L-SVM and is competitive to SMM, i.e. the state-of-the-
art method, both in classification accuracy and computation-
al complexity. Moreover, TV-SVM can be straightforwardly
generalized to higher dimensional input data.
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