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ABSTRACT

The present work introduces methods for sampling and in-
ference for the purpose of semi-supervised classification over
the nodes of a graph. The graph may be given or constructed
using similarity measures among nodal features. Leveraging
the graph for classification builds on the premise that rela-
tion among nodes can be modeled via stationary distributions
of a certain class of random walks. The proposed classifier
builds on existing scalable random-walk-based methods and
improves accuracy and robustness by automatically adjusting
a set of parameters to the graph and label distribution at hand.
Furthermore, a sampling strategy tailored to random-walk-
based classifiers is introduced. Numerical tests on bench-
mark synthetic and real labeled graphs demonstrate the per-
formance of the proposed sampling and inference methods in
terms of classification accuracy.

Index Terms— Random Walks, Sampling on Graphs,
PageRank, Semi-Supervised Learning, Seed Set Expansion

1. INTRODUCTION

In many machine learning tasks, data are not available in a
feature-based representation; instead, only a set of relations
between instances can be leveraged for inference. In bipar-
tite networks for example nodes may correspond to users
and items, for which no information is available other that
the interactions between them [1]. Although networks may
arise naturally in certain applications (e.g. social interactions,
transportation infrastructure, biological dependencies) they
can in general be constructed from any set of nodal feature
vectors using proper similarity measures; see e.g., [2, 3]. In
either case, the task of semi-supervised learning (SSL) for
classification over graphs boils down to observing a subset
of the nodes, and then making predictions on the remaining
unobserved ones. SSL on graphs has been approached by
a variety of intertwined methods based on the principles of
iterative label propagation [4, pp. 193-216],[5, 6, 7], while
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also viewed under the scope of kernels on graphs [8], ran-
dom walks [9, 10], graph partitioning [11], and transductive
learning [12].

In this context, the present work aims at improving the
performance of random-walk-based classifiers. The latter are
of particular interest in the presence of large graphs since they
enjoy high scalability by fully leveraging graph sparsity. The
proposed classifier builds on an efficient parametrization of
random walks; parameters are then tuned in order to increase
classification confidence on nodes with known labels aim-
ing at boosting accuracy on unlabeled nodes. The proposed
tuning is solved via quadratic programming at the dimen-
sion of available samples which are typically very few. Thus,
the computational overhead over standard (un-tuned) random-
walks is relatively small. Subsequently, the desire for classi-
fiers with high confidence over the entire graph and for any
label distribution inspired the development of a novel sam-
pling strategy aimed at increasing the accuracy of random-
walk-based classifiers. The rest of the paper is organized as
follows. Section 2 formally introduces SSL random-walk-
based classification on graphs. Our proposed tuning method
is presented in Section 3, while the novel sampling scheme is
introduced in Section 4. Finally, numerical experiments are
presented in Section 5.

2. MODELING AND PROBLEM STATEMENT

Consider a graph G = {V, E} where V is the set of N nodes
and E the set of edges. In general, a weight matrix W is
also present with Wi,j > 0 if (vi, vj) ∈ E . Furthermore,
consider that a discrete label yi ∈ Y corresponds to each node
vi. In SSL for classification over graphs, a subset L ⊂ V
of nodes is assigned labels yL, and the goal is inferring the
labels of the remaining nodes belonging to the unlabeled set
U = V \ L. Given a measure of influence, a node that is
influenced more by labeled nodes of a certain class is assumed
to also belong to the same class. Thus, label-propagation on
graphs boils down to quantifying the influence of L on U ,
see, e.g. [7, 10, 13]. A simple, intuitive and easy to compute
measure of nodal influence can be obtained via the concept of
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random walks on graphs.
The simple random walk on a graph is essentially a

Markov chain where the state space is the set of nodes, and
the transition probabilities are given as Pr{Xt = vi|Xt−1 =
vj} =Wi,j/dj , where Xt denotes the position of the random
walker (state) at slot t, dj =

∑
k∈Nj

Wk,j is the degree of
vertex (or node) vj and Nj its neighborhood [14, 15]. The
stationary distribution of the Xt is given by the dominant
right eigenvector of the column stochastic transition probabil-
ity matrix H := WD−1, where D = diag (d1, d2, . . . , dN )
[16]. Consider now the Random Walk with Restart (RwR)
(also known as personalized Pagerank [17]) that is further
parametrized by a teleportation vector θ and a teleportation
probability d, with transition probabilities

Pr{Xt = vi|Xt−1 = vj ;θ, d} =
{
Wi,j/dj , w.p. 1− d
θi, w.p. d

.

(1)
Unlike the simple random walk where transitions occur only
to neighboring nodes, each transition in the RwR is accom-
panied by a “cointoss” that with probability d may “teleport”
the random walk onto other nodes of the graph. It follows
readily that the transition probability matrix of the RwR in
(1) is expressed as P = (1 − d)H + dθ1T , where 1 is the
N−length vector containing ones. Interestingly, by setting
θ = ei where ei is the i−th canonical vector, the random
walk teleports back only to the i−th node. Such nodes are
often referred to as “seeds”; see, e.g. [9]. The key idea is
that the steady-state distribution π encapsulates the influence
of the seed vi on the entire graph. Intuitively speaking, the
closer any node vj is to vi in the random-walk sense, the
larger the value πj is expected to be. In general, multiple
seeds belonging to S ⊂ V collectively influence the graph
by seeding the RwR via non-zero values in the corresponding
entries of the teleportation vector, that is θi > 0 ,∀i ∈ S and
θi = 0 ,∀i /∈ S . In a classification-over-the-graph scenario,
a stationary distribution π(k) can be computed for each class
k ∈ Y where the seeding set is Lk = {i ∈ L : yi = k},
i.e. labeled nodes that belong to class k. If Lk = ∅ for some
class, one may set π(k) = 0 for simplicity. Upon obtaining
{π(k)}k∈Y , label predictions can be made over the graph as
ŷi = argmaxk∈Y πi(k), ∀i ∈ U that is, by selecting the
class with corresponding labeled nodes exhibiting maximum
influence.

Existing random-walk-based label propagation schemes
typically do not discriminate among labeled nodes; see,
e.g.,[8, 5, 9]; each of them enjoys equal seeding contribution
to their corresponding π(k) via uniform per-class teleporta-
tion distributions θk = θUnif

y , where

[θUnif
k ]i =

{ 1
|Lk| , i ∈ Lk

0, otherwise
.

However, in principle, higher classification accuracy should
be achievable for (unknown) non-uniform θk’s. The ensuing
section proposes a scalable method for improving RwR’s by
tuning θk’s.

Algorithm 1 Tuned RwR for SSL on graphs
Input: W, d,L,yL
Compute G:,L as in (3) via batch Power Method
Obtain θ∗LS by solving (5)
Predict unlabeled nodes as ŷU = sign(GU,Lθ

∗)

3. TUNED RANDOM WALKS
The present section introduces methods for improving the ac-
curacy of RwR-based classifiers by tuning the per-class tele-
portation distributions θk. The main idea is to parametrize
the per-class stationary distributions π(k) that act as soft la-
bels by the corresponding θk as π(k;θk). Subsequently, we
leverage the fact that π(k;θk) which is formally obtained via
the power method (see, e.g., [9]) is also given as

π(k;θk) = G:,Lk
θk ∀k ∈ Y, (2)

where G:,Lk
contains the subset of columns of matrix G =

(I − (1 − d)H)−1 that correspond to Lk. Overall, the per-
node stationary distributions that correspond to L = ∪k∈YLk

suffice for SSL classification and can be obtained in batch
form as columns of N × |L| matrix G:,L which satisfies the
following matrix equation

G:,L = (1− d)HG:,L + dSL (3)

and can be computed via batch power method; here, SL is the
N ×|L| selection matrix such that SL = [. . . , ei, . . .] ∀i ∈ L.
While the complexity of performing (3) isO(|L|N2), exploit-
ing the sparsity of H reduces the former to just O(|L||E|).
Parametrization of d remains a challenging direction that is
being pursued outside the scope of this paper. In our con-
text, d is typically small enough to boosts accuracy via far-
reaching random walks while being large enough to ensure
convergence of (3) in a few iterations (cf. [18]). Having
parametrized per-class RwRs (cf. (2)), let us denote the length
|L| vector θ implicitly containing the non-zero elements of θk

at entries that correspond to Lk and allowing for the formula-
tion of the following general problem

θ∗ = argmin
θ

∑
i∈L

f(ŷi, yi;θ) + λg(θ)

s.t. eTLk
θ = 1 ∀k ∈ Y, 0 ≤ θ ≤ 1 (4)

where f(ŷi, yi;θ) is the fitting loss, g(θ) is a regularization
term, eS denotes a vector of 1’s at entries indicated by S and
0’s elsewhere, and the simplex constrains ensure that the re-
sulting {θ∗k}k∈Y are valid probability mass functions. The
aim is to tune θ in order to increase the confidence (or de-
crease the fitting loss) with which the RwR-based classifier
predicts the nodes whose true labels are known. While vari-
ous type of costs (e.g. hinge loss, Huber loss) may act as f(·),
a simple choice is the quadratic loss that for Y = {0, 1} is

f(ŷi, yi;θ−1,θ1) = (πi(1;θ1)− πi(−1;θ−1)− yi)2,
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with the general optimization problem in (4) becoming the
following quadratic program

θ∗LS = argmin
θ
‖GL,LDyθ − yL‖22 + λ‖θ − θUnif‖22

s.t. eTL−1
θ = 1, eTL1

θ = 1, 0 ≤ θ ≤ 1 (5)

where Dy = diag(yL), and the regularizer penalizes large
deviations from non-informative uniform teleportation distri-
butions encapsulated in θUnif . Obtained θ∗LS is then used
to yield predictions ŷU on the remaining unlabeled. Over-
all, the proposed Tuned RwR method is summarized as Algo-
rithm 1. In terms of complexity,O(|L||E|) is required for (3),
O(|L|3) for (5) and O(|L|N) for the predictions. Since typi-
cally |L| � N , the complexity of the method scales linearly
with N allowing for application to large-scale graphs. Re-
garding the case of multiple classes, one may follow the one-
vs-the-rest approach and solve (5) for each class in Y with all
other classes treated as −1.

4. MINIMUM COHERENCE SAMPLING

The Tuned RwR presented in the previous section is readily
applicable for classification when the graph and set of labeled
nodes is given. Nevertheless, given a budget of k labels and
the freedom to design L with |L| ≤ k, one may further im-
prove classification accuracy by judiciously selecting which
nodes to sample. For instance, [19] and [20] developed sam-
pling designs for GMRF-based SSL classification on graphs (
see also our recent work [21]), while labeling nodes with high
Pagerank scores was proposed in [9] for RwR-based classi-
fiers. Towards this goal, the present section puts forth a sam-
ple design method that is tailored to RwR-based classifiers.

In Tuned RwR’s (cf. (5) ) the aim is at increasing the
confidence with which the classifier predicts the known la-
bels. The notion can be generalized to describe the predic-
tion confidence over the entire graph for any label configu-
ration over a given (candidate) label set L. Ideally, in the
binary case, one would prefer classifiers that yield large mar-
gins {|πi(1)−πi(−1)|}i∈V between the predicted soft labels.
Thus, for a given L, finding a relatively large ε > 0 such that

‖π(1;θ1)− π(−1;θ−1)‖22 ≥ ε, (6)

holds forall {L1,L−1 ⊆ V : L1 ∪ L−1 = L} and θ1,θ−1
on the simplex, implies that all possible classifiers based
on (Tuned) RwR’s are sufficiently confident. Note that
the left-hand term in (6) can be written as ‖π(1;θ1)‖22 +
‖π(−1;θ−1)‖22 − 2πT (1;θ1)π(−1;θ−1) where

‖π(1;θ1)‖22 =
∑
i∈L1

‖gi‖22[θ1]
2
i + 2

∑
i,j∈L1

j 6=i

gT
i gj [θ1]i[θ1]j

≥
∑
i∈L1

‖gi‖22[θ1]
2
i ≥

1

|L1|
min
i∈L1

‖gi‖22 (7)

with gi denoting the ith column of G:,L (cf, (2)). The first in-
equality follows from the positivity of all quantities involved,

Algorithm 2 Greedy approximation of MiCo set of nodes
Input: W, d, k
Compute G as in (3) with L = V via batch Power Method
Initialize: L(0) = argmaxi∈V ‖gi‖2, U (0) = V/L(0)

for t = 1 : k − 1 do
Obtain {cL(t−1)

j }j∈U(t−1) as in (10)

i∗ = argminj∈U(t−1) cL
(t−1)

j

L(t) = L(t−1) ∪ {i∗}, U (t) = U (t−1)/{i∗}
end for
Return set of indices L(k)

and the second inequality from the fact that θ1 lies on the
probability simplex; similarly for ‖π(−1;θ−1)‖22. Further-
more, the cross-products arising from (6) are bounded as

πT (1;θ1)π(−1;θ−1) =
∑
i∈L1

∑
j∈L−1

gT
i gj [θ1]i[θ−1]j

≤
∑
i∈L1

∑
j∈L−1

gT
i gj

≤ |L1||L−1|max
i∈L1

max
j∈L−1

gT
i gj

≤ |L|
2

4
max
i,j∈L

gT
i gj (8)

A closer look at (7) and (8) reveals that finding L that satis-
fies (6) with the largest ε can be approximated by maximizing
mini∈L ‖gi‖2 while minimizing maxi,j∈L g

T
j gi. The latter

is closely tied to solving

L∗ = arg min
L⊂V:|L|=k

C(G:,L) (9)

where
C(G:,L) = max

i,j∈L
i6=j

gT
i gj

‖gi‖2‖gj‖2

is the maximum angle between any pair of columns of G:,L,
also termed as matrix coherence [22]. Solving (9) in order
to obtain the minimum coherence (MiCo) set of nodes L∗
incurs exponential complexity since all k−sized subsets of
V need to be evaluated. In practice, a MiCo set of size k
can be approximated using a greedy iterative algorithm that
expands a given MiCo setL(t) at iteration t toL(t+1) = L(t)∪
i∗, where i∗ is the index of the node i ∈ U (t) = V \ L(t)

with corresponding gi that has maximum angle with the linear
subspace formed by the columns of G:,L(t) . Equivalently, one
may select i ∈ U (t) that yields minimum normalized inner
product coefficient

cL
(t)

i =
gT
i p
L(t)

i

‖gi‖2‖pL
(t)

i ‖2
, (10)

where pL
(t)

i = PL(t)gi is the orthogonal projection of gi onto
the linear subspace spanned by the columns of G:,L(t) , with

PL(t) = G:,L(t)(GT
:,L(t)G:,L(t))−1GT

:,L(t)
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Fig. 1. Accuracy vs number of labeled nodes

being the corresponding projection operator [23] which can
be updated recursively as new columns are added. The pro-
posed method for approximating a MiCo set of k nodes is
summarized as Algorithm 2 and incurs O(k2N2) complexity
which can be affordable for small to medium-size graphs. For
larger graphs, one may consider preselecting a subset Lpre ⊆
V and then applying Algorithm 2 to Lpre with O(k2|Lpre|2)
complexity.

5. NUMERICAL TESTS
Experiments on synthetic and real-world labeled graphs
where run in order to assess the performance of the pro-
posed Tuned RwR classifiers as well as the MiCo sampling
strategy. Fig.1 depicts classification accuracy (weighted F1-
score) on benchmark graphs as a function of the number of
labels that were obtained. All random walks were performed
with d = 0.05 which yields a good tradeoff between accuracy
and complexity (cf. (3)), and with λ = 0.3; experiments
involving random samples where averaged over 30 Monte
Carlo runs. Two synthetic graphs generated according to the
LFR benchmark method [24] were tested first, one with 3
classes (Fig.1(a)) and one with 2 (Fig.1(b)). The resulting
plots indicate that the proposed tuning methods improve the

classification accuracy of RwRs, especially when samples
are picked at random. Furthermore, the proposed MiCo sam-
pling strategy significantly outperforms Pagerank [9] when
very few samples are afforded. As expected, MiCo sampling
produces extremely confident classifiers that offer little room
for improvement via tuning. As is well documented, graph
structures and label distributions may vary greatly among
real world networks. Our results on the BlogCatalog network
[25] depicted in Fig.1(c) show Pagerank sampling (even
combined with Tuned RwRs) to be highly inaccurate, signif-
icantly less fit that random sampling. On the other hand, the
proposed MiCo sampling enjoys superior accuracy through-
out the range of afforded labels. Finally, plotted in Fig.1(d)
are results on the large Cora citation network available in
[26]. MiCo sampling was not implemented for this graph
due to memory limitations. Each node of Cora corresponds
to a scientific paper belonging to one (or more) fields used
as class labels for our experiments; for nodes with more than
one classes only the first was used. Again it was observed that
tuning improves the performance of RwRs with the improve-
ment being marginal for Pagerank sampling but significant
for random sampling.
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