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ABSTRACT

Active graph-based semi-supervised learning (AG-SSL) aims to se-
lect a small set of labeled examples and utilize their graph-based re-
lation to other unlabeled examples to aid in machine learning tasks.
It is also closely related to the sampling theory in graph signal pro-
cessing. In this paper, we revisit the original formulation of graph-
based SSL and prove the supermodularity of an AG-SSL objective
function under a broad class of regularization functions parameter-
ized by Stieltjes matrices. Under this setting, supermodularity yields
a novel greedy label sampling algorithm with guaranteed perfor-
mance relative to the optimal sampling set. Compared to three state-
of-the-art graph signal sampling and recovery methods on two real-
life community detection datasets, the proposed AG-SSL method at-
tains superior classification accuracy given limited sample budgets.

Index Terms— active semi-supervised learning, greedy algo-
rithm, graph signal processing, supermodularity

1. INTRODUCTION

Given a set of labeled examples and a set of unlabeled examples,
the goal of semi-supervised learning (SSL) is to leverage the inher-
ent relations between labeled and unlabeled examples for improved
learning performance. In particular, graphs are often used to spec-
ify the relation between examples [1–4], where a node represents an
example and an edge reveals the similarity between two examples,
quantified by the edge weight. Furthermore, in active graph-based
SSL (AG-SSL), the set of labeled examples is not given in advance
but rather is chosen strategically based on the graph representation.
Active learning is appealing in cases when label querying is expen-
sive while unlabeled examples are readily available.

In recent years, AG-SSL has received great attention in the con-
text of sampling and recovery methods for graph signal processing
[5, 6], where labels are viewed as signals atop the underlying graph.
This body of work has focused on the notions of graph Fourier trans-
form and bandlimitedness, in analogy with the sampling theory in
traditional (i.e. temporal) signal processing. For a graph signal x ∈
Rn, its graph Fourier transform (GFT) is defined as x̃ = Fy, where
x̃ is a vector of the corresponding graph Fourier coefficients. The
Fourier transform matrix F ∈ Rn×n is derived from the eigenvec-
tors of a real symmetric matrix X that represents the graph. Pop-
ular choices of X are X = A, the (weighted) adjacency matrix,
X = L, the (unnormalized) graph Laplacian matrix defined as L =
D −A, with D denoting the diagonal matrix of node degrees, and
X = LN , the normalized graph Laplacian matrix defined as LN =
D−1/2LD−1/2. For a given F, the graph signal x is said to be K-
bandlimited if there are only K nonzero coefficients in x̃, and K is
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referred to as the bandwidth. This notion of bandlimitedness, i.e. re-
striction to a subspace, has been essential to the recent development
of graph signal sampling and recovery schemes [7, 8].

Different from the perspective of graph signal processing, in this
paper we revisit the original formulation of graph-based SSL pro-
posed in [9, 10]. In particular, we dispense with any assumptions
on the bandlimitedness of graph signals. We formulate the prob-
lems of inferring a graph signal (labels) based on an incomplete set
of noisy linear observations as well as selecting the set of obser-
vations to maximize the precision of this inference. We prove that
under a broad class of regularization functions parameterized by the
family of Stieltjes matrices, the objective function is supermodular
in the set S ⊂ V of labeled examples. A real symmetric matrix
X is said to be a (possibly singular) Stieltjes matrix if it is positive
semidefinite and its off-diagonal entries are non-positive, which ap-
plies to the two popular matrices L and LN used in graph signal
processing. Under this setting, we propose an efficient greedy AG-
SSL algorithm for selecting a set S of samples with |S| = s. Su-
permodularity then guarantees that the loss resulting from the pro-
posed AG-SSL method is bounded by a constant factor relative to
the optimal sampling set S∗, where finding S∗ requires searching
over all

(
n
s

)
possible combinations of examples and is hence com-

putationally infeasible. In contrast, under a different bandlimited
signal model, supermodularity does not hold and only weak super-
modularity can be ensured [11,12], resulting in a worse performance
guarantee. Tested on two real-life community detection datasets and
given limited sample budgets, the proposed AG-SSL method attains
superior classification accuracy than three state-of-the-art graph sig-
nal sampling and recovery methods.

2. PROBLEM FORMULATION

Let G = (V, E) be an undirected weighted connected graph, where
V and E are the sets of nodes and edges with size |V| = n and
|E| = `, respectively. The edge weights in G are represented by a
symmetric (weighted) adjacency matrix A ∈ Rn×n, where Aij > 0
specifies the weight of an edge (i, j) ∈ E , and Aij = 0 otherwise.
The (weighted) degree matrix D is then defined as a diagonal matrix
with the vector A1 along the diagonal, where 1 is the all-ones vector,
and the graph Laplacian matrices L and LN are defined as L =
D−A and LN = D−1/2LD−1/2. The notation tr denotes matrix
trace and ‖x‖ refers to the Euclidean norm of a vector x.

We denote by x the signal (i.e., labels) to be recovered on the
graph G. In this work, x is modelled as a random signal with a
multivariate Gaussian prior distribution,

p(x) ∝ exp

(
−1

2
xTΩ0x

)
, (1)
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where the mean is taken to be zero without loss of generality. The
precision matrix Ω0 is symmetric positive semidefinite with rank
either n − 1 or n. The case rank(Ω0) = n − 1 corresponds to
an improper Gaussian distribution. This allows Ω0 to be chosen
to be proportional to the unnormalized or normalized graph Lapla-
cian matrices, which have one-dimensional nullspaces (consisting of
multiples of 1 in the case of L).

A total of m noisy linear observations of the form y = Cx + n
are available to be taken, where C is a fixed m × n measurement
matrix, n ∼ N (0, σ2I) represents i.i.d. Gaussian noise,1 and I is
the identity matrix. We are restricted however to choosing a subset
S of size s < m, resulting in the partial observations yS = CSx +
nS , where CS is the submatrix of C with rows indexed by S. The
posterior distribution of x given yS is given by

p(x | yS) ∝ exp

[
−1

2

(
1

σ2
‖yS −CSx‖2 + xTΩ0x

)]
, (2)

which is also Gaussian with precision matrix

Ω(S) = Ω0 +
1

σ2
CT
SCS . (3)

We assume that Ω(S) is non-singular for S 6= {∅}. In other words,
if rank(Ω0) = n−1, the addition of any rank-1 term CT

v Cv , v ∈ V ,
results in a full-rank matrix. This assumption is satisfied for example
if Ω0 is proportional to the graph Laplacian matrix L and the rows
of C satisfy Cv1 6= 0 for all v ∈ V .

Given the posterior distribution (2) and the invertibility assump-
tion above, the estimator x̂ that minimizes the mean squared error
(MSE) with respect to x is the posterior mean,

x̂ = E[x | yS ] =
1

σ2
Σ(S)CT

SyS , (4)

where Σ(S) = Ω(S)−1 is the posterior covariance matrix. The
corresponding minimum MSE is

E
[
‖x̂− x‖2 | yS

]
= tr cov(x | yS) = trΣ(S).

We thus define the objective function

f(S) = trΣ(S) = trΩ(S)−1 = tr

(
Ω0 +

1

σ2
CT
SCS

)−1

, (5)

taking f(S) = +∞ if Ω(S) is singular. The goal of AG-SSL is to
select a set S ⊂ V of size |S| = s to minimize f(S).

We note that maximizing the posterior distribution (2) is equiv-
alent to solving the following minimization problem with α = σ2:

minimizex ‖yS −CSx‖2 + αxTΩ0x, (6)

whose solution is also given by (4). The formulation (6) coincides
with the formulation of graph-based SSL proposed in [9, 10].

3. MAIN RESULTS

3.1. Properties of objective function

In this section, we study properties of the objective function f(S)
defined in (5). These properties all relate to the change in f(S)
when a node is added to an existing subset. We denote by δv(S) =
f(S)− f(S ∪ {v}) the decrease due to adding node v to S.

1While our results can also be shown to hold for the noiseless case n = 0,
we do not present that case here.

Lemma 1. Assume that Ω(S) in (3) is invertible. Then the decrease
in f due to adding node v to S is given by

δv(S) = f(S)− f(S ∪ {v}) =
∥∥Σ(S)CT

v

∥∥2
σ2 + CvΣ(S)CT

v

. (7)

Proof. We have

Ω(S∪{v}) = Ω0+
1

σ2

(
CT
SCS + CT

v Cv

)
= Ω(S)+ 1

σ2
CT
v Cv

so adding a node results in a rank-1 update to Ω(S). By the matrix
inversion lemma,

Σ(S ∪ {v}) = Σ(S)− Σ(S)CT
v CvΣ(S)

σ2 + CvΣ(S)CT
v

. (8)

The result is obtained by taking the trace and applying the identity
tr(XY) = tr(YX) to the numerator.

If Ω(S) is singular, then δv(S) = +∞ since the addition of v is
assumed to make Ω(S ∪ {v}) invertible and f(S ∪ {v}) is hence
finite.

Corollary 2. The objective function f(S) is a monotonically non-
increasing set function.

Proof. If Ω(S) is invertible, then Σ(S) is positive definite and the
decrease (7) from adding a node is always non-negative. If Ω(S) is
singular then δv(S) = +∞.

Next we consider conditions under which f(S) is a supermodu-
lar set function. For f to be supermodular, we must have δv(S) ≥
δv(T ) for any S, T = S ∪ {u}, u /∈ S, and v /∈ T . For general
C and Ω0, it is possible to construct counterexamples where super-
modularity does not hold. We omit such a construction here due to
limited space.

In the remainder of this section, we specialize to the case C = I
and assume that Ω0 is a (possibly singular) Stieltjes matrix, i.e.,
a symmetric positive (semi)definite matrix with non-positive off-
diagonal entries. The latter assumption is satisfied if Ω0 ∝ L or
Ω0 ∝ LN . With C = I and S 6= {∅}, Ω(S) = Ω0 + 1

σ2 ITS IS
remains Stieltjes and is invertible (i.e. positive definite). We may
then exploit the inverse-positivity property of Stieltjes matrices [13],
namely that Ω(S)−1 = Σ(S) ≥ 0 element-wise. Under the above
assumptions, the function f(S) is supermodular as shown below.

Theorem 3. The objective function f(S) is supermodular if C = I
and Ω0 is a (possibly singular) Stieltjes matrix.

Proof. As discussed earlier, it suffices to show that δv(S) ≥ δv(T )
for any T = S ∪ {u}, u /∈ S, and v /∈ T . If Ω(S) is singular, then
δv(S) = ∞ and the inequality holds. Otherwise, we use Lemma 1
and set C = I to obtain

δv(S)− δv(T ) =
∥∥Σ(S)Tv

∥∥2
σ2 + Σ(S)vv

−
∥∥Σ(T )Tv

∥∥2
σ2 + Σ(T )vv

∝
(
σ2 + Σ(T )vv

) ∥∥∥Σ(S)Tv
∥∥∥2

−
(
σ2 + Σ(S)vv

) ∥∥∥Σ(T )Tv
∥∥∥2 . (9)

Using (8) and C = I, Σ(T ) can be expressed in terms of Σ(S).
Taking the vth row of the resulting expression yields

Σ(T )v = Σ(S)v −
Σ(S)uv

σ2 + Σ(S)uu
Σ(S)u, (10)
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whence

Σ(T )vv = Σ(S)vv −
Σ(S)2uv

σ2 + Σ(S)uu
. (11)

We substitute (10) and (11) into the right-hand side of (9) and cancel
a pair of terms. Defining

∆v =
Σ(S)uv

σ2 + Σ(S)uu
Σ(S)u, (12)

the result is

δv(S)− δv(T ) ∝
(
σ2 + Σ(S)vv

)
∆v (2Σ(S)v −∆v)

T

− Σ(S)2uv
σ2 + Σ(S)uu

∥∥∥Σ(S)Tv
∥∥∥2

=
(
σ2 + Σ(S)vv

)
∆vΣ(T )Tv + Σ(S)v×[(

σ2 + Σ(S)vv
)
∆v −

Σ(S)2uv
σ2 + Σ(S)uu

Σ(S)v
]T

,

(13)

where in the last line we have used Σ(T )v = Σ(S)v −∆v from
(10) and (12).

We show that the right-hand side of (13) is non-negative. Since
Ω0 is Stieltjes, so too are Ω(S) and Ω(T ). It follows that Σ(S)v ,
Σ(T )v , and ∆v are all element-wise non-negative (the last can be
seen from (12)). The remaining quantity in square brackets can be
rewritten as (

σ2 + Σ(S)vv
)
Σ(S)u −Σ(S)uvΣ(S)v (14)

after pulling out a factor of Σ(S)uv
(
σ2 + Σ(S)uu

)−1, which is
non-negative. To show that (14) is also element-wise non-negative,
we recall that T = S ∪ {u} and switch the roles of u and v in (10)
to derive

Σ(S ∪ {v})u = Σ(S)u −
Σ(S)uv

σ2 + Σ(S)vv
Σ(S)v ≥ 0,

where the non-negativity is due to Ω(S ∪ {v}) being Stieltjes. It is
seen that (14) is a positive multiple of Σ(S ∪ {v})u. We conclude
that the right-hand side of (13) is indeed non-negative as the sum of
inner products of non-negative vectors.

3.2. Proposed Greedy AG-SSL Algorithm

Based on the supermodularity result stated in Theorem 3, we pro-
pose a greedy AG-SSL algorithm as summarized in Algoritm 1. Due

Algorithm 1 Greedy AG-SSL Algorithm

Input: Graph G, regularization Ω0, σ, # of samples s
Output: sampling set S and predictor x̂(S)
Initialization: S = {∅}
for k = 1 to s do

Find v∗ = argminv∈V/S f(S ∪ v) using (5)
S ← S ∪ {v∗}

end for
x̂(S) = σ−2Σ(S)ITSyS using (3) and (4)

to supermodularity, the proposed algorithm is guaranteed to have at
most a constant-factor performance loss relative to the optimal sam-
pling set, as stated in the following corollary [14].

Corollary 4. Let S be the sampling set obtained from Algorithm
1, S∗ a minimizer of f(S) in (5) over sets of size |S| = s, and
S∗1 a minimizer of f(S) over singletons (e.g. from first iteration of
Algorithm 1). Then

f(S)− f(S∗)
f(S∗1 )− f(S∗)

≤
(
1− 1

s

)s−1

→ 1

e
as s→∞.

4. EXPERIMENTS

4.1. Community Detection Datasets

Community detection is a fundamental task in network analysis [15–
17]. Based on the connectivity structure of a graph, it aims to parti-
tion the nodes into well-connected groups, also known as communi-
ties. Community detection can be cast as a semi-supervised learning
problem when the labels (i.e., community membership) of a sub-
set of nodes are made available. In this section, we use the Karate
club network [18] and the dolphin social network [19] for perfor-
mance evaluation. We purposely choose these two small networks
having n = 34 and n = 62 nodes, respectively, due to the follow-
ing reasons: (i) there are only two community labels (+1 and −1)
and hence it is essentially a binary classification task, which avoids
variations caused by different representations of multi-class labels.
(ii) the graphs are given and therefore one avoids the effect of differ-
ent graph construction methods on the final outcome. (iii) For active
node sampling with fixed size |S| = s, the total number of sampling
sets,

(
n
s

)
, grows approximately as ns. Therefore, smaller networks

allow better tracking of the similarity of different sampling strategies
in terms of the proportion of overlapping nodes.

4.2. Comparative Methods

We compare the proposed greedy AG-SSL method in Algorithm 1
with the following AG-SSL methods:
Random sampling (Rand): Randomly sample s nodes and report
the averaged results over 10 trials.
Graph spectral proxy (GSP) [20]: The graph spectral proxy using
the regularization matrix Ω0 for GFT is used for node sampling (Al-
gorithm 1 in [20]) and the corresponding predictor is implemented.
We set the parameters of GSP as k = 5 and r = s.
Graph shift operator (GSO) [8]: The graph shift operator D−1A
is used for node sampling (Algorithm 1 in [8]) and the graph total
variation minimization method [21] is used for prediction. We set
the parameters of GSO as K = 20.
Chamon-Ribeiro’s method (CRM) [12]: The greedy node sam-
pling method using Ω0 for GFT (Algorithm 2 in [12]). Since the
CRM optimal predictor requires assumptions of band-limitedness
and stationarity, we instead substitute its selection of sampled nodes
into our predictor in (4). The noise parameter of CRM is λw = 0.01.

4.3. Performance Evaluation

Since AG-SSL on the two community detection datasets discussed
in Section 4.1 can be viewed as a semi-supervised binary classifi-
cation problem, for each method we take the sign of the predic-
tion as the final predicted label. For all methods other than Al-
gorithm 1, we assume that community labels are acquired without
noise. For Algorithm 1, to fully comply with the signal model in
Section 2, we added an artificial zero-mean Gaussian noise with vari-
ance σ2 = 1/ tr(Ω0) to the observed labels. The parameter σ2 can
also be viewed as the regularization parameter for the Stieltjes ma-
trix Ω0 in (6). Figures 1 and 2 show the loss function value from
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Table 1: Fraction of overlapping samples between different AG-SSL methods (%).

Karate, # samples s = 6, Ω0 = L Dolphin, # samples s = 5, Ω0 = L

Proposed GSP GSO CRM Proposed GSP GSO CRM
Proposed 100 66.67 16.67 16.67 Proposed 100 40 20 0

GSP 66.67 100 33.33 0 GSP 40 100 0 0
GSO 16.67 33.33 100 0 GSO 0 0 100 0
CRM 16.67 0 0 100 CRM 20 0 0 100
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Fig. 1: AG-SSL using Ω0 = L and σ2 = 1/ tr(Ω0). The pro-
posed method yields perfect community detection by only sampling
2 nodes in each dataset.

(5) and the prediction accuracy of different AG-SSL methods using
Ω0 = L and Ω0 = LN , respectively, where in each curve the mark-
ers correspond to the number s of selected samples. It is observed
that the proposed method (Algorithm 1) attains the least loss, and
Rand may have lower loss than some methods. This is not surprising
because the proposed method is designed to minimize the loss via
greedy node sampling, while other methods have different objective
functions. Nonetheless, for each method except Rand, lower loss is
aligned with higher accuracy. The slight fluctuation in the accuracy
curve is an artifact of the sign operation for label prediction.

It is worth mentioning that the proposed method can achieve
perfect community detection (100% accuracy) by only sampling 2
nodes in each dataset, either using L or LN as the regularizer. On the
other hand, the other methods may require more samples to achieve
the same performance. We also observe that using LN instead of L
can improve the accuracy of GSP and CRM, which can be explained
by the fact that selecting a different Ω0 is equivalent to changing
the Graph Fourier basis for sampling. To further study different AG-
SSL methods, Table 1 displays the fraction of overlapping samples
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Fig. 2: AG-SSL using Ω0 = LN and σ2 = 1/ tr(Ω0). The pro-
posed method attains similar performance as in Figure 1. The use of
LN improves the accuracy of GSP and CRM.

between different sampling strategies when Ω0 = L. An interesting
finding is that the proposed method has a good amount of overlap
with GSP, whereas the samples of GSO and CRM can be very dif-
ferent. Similar relations hold when Ω0 = LN . We believe this
distinction can be explained by the use of spectral proxy for approx-
imating the actual bandwidth of a graph signal in GSP [20].

5. CONCLUSION

This paper proved the supermodularity of graph-based SSL under
the family of Stieltjes matrix regularization functions, which in-
cludes the unnormalized and normalized graph Laplacian matrices
that are widely used in graph signal processing. Our analysis yields
an efficient greedy AG-SSL algorithm with guaranteed performance
relative to the optimum. Evaluated on two community detection
datasets, the proposed algorithm outperforms three recent graph
signal sampling methods given limited sample budgets. Our future
work includes extension to vector-valued labels and joint optimiza-
tion of the sampling set and the Stieltjes matrix for AG-SSL.
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