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ABSTRACT
Gaussian mixture model (GMM) is a powerful probabilis-
tic model for representing the probability distribution of ob-
servations in the population. However, the fitness of Gaus-
sian mixture model can be significantly degraded when the
data contain a certain amount of outliers. Although there
are certain variants of GMM (e.g., mixture of Laplace, mix-
ture of t distribution) attempting to handle outliers, none of
them can sufficiently mitigate the effect of outliers if the out-
liers are far from the centroids. Aiming to remove the effect
of outliers further, this paper introduces a Self-Paced Learn-
ing mechanism into mixture of t distribution, which leads to
Self-Paced Mixture of t distribution model (SPTMM). We de-
rive an Expectation-Maximization based algorithm to train
SPTMM and show SPTMM is able to screen the outliers.
To demonstrate the effectiveness of SPTMM, we apply the
model to density estimation and clustering. Finally, the results
indicate that SPTMM outperforms other methods, especially
on the data with outliers.

Index Terms— Self-Paced Learning, Robustness, Gaus-
sian Mixture Model, Mixture of t distribution

1. INTRODUCTION

Gaussian Mixture Model (GMM) [1] is a powerful probabilis-
tic model for representing a population consisting of several
subpopulations. Due to its satisfactory flexibility, good in-
terpretability, and simple parameter learning, GMM has been
widely used in many fields, including data mining, pattern
recognition [2], machine learning, and statistical analysis.

In GMM, the basic model is p(xxx) =
∑g

j=1 πjN (xxx|µµµj ,
ΣΣΣj), where each Gaussian density N (xxx|µµµj ,ΣΣΣj) is a compo-
nent of the mixture and has its own mean µµµj and covariance
ΣΣΣj , and the parameters πj ≥ 0 are mixing coefficients satis-
fying

∑g
j=1 πj = 1. However, due to the thin-tailed property

of the Gaussian distribution, GMM may perform poorly on
the data which contain a group or groups of observations with
heavy tails or outliers [3].

In order to handle the data with heavy tails or outliers,
heavy-tailed distributions have been introduced into mixture
model. For instance, Laplace distribution has heavier tails
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than Gaussian distribution, and t distribution is a robust gen-
eralization of Gaussian distribution [4–6]. In particular, mix-
ture of Laplace distribution is proposed by [7] while Peel et
al. [3] introduced mixture of t distribution (TMM) with each
component assumed to be a t distribution. These mixture
models alleviate the influence of outliers to a certain degree.

Unfortunately, the aforementioned approaches cannot
achieve satisfactory performance when the outliers stay dis-
tant from the centroids [8]. The main reason is that these
methods focus on alleviating the influence of outliers based
on heavy-tailed distribution while the outliers are still in-
cluded in the learning procedure. With that reason, these
methods cannot remove the effect of outliers adequately. In
fact, the performance of these models can be significantly
compromised when the outliers are far from the centroids.

To further reduce the influence of outliers, we introduce
the Self-Paced Learning (SPL) [9] mechanism into mixture
model, and develop a novel method named Self-Paced Mix-
ture of t distribution model (SPTMM). Analogous to human
learning procedure (e.g., a pupil is supposed to understand
elementary algebra before he/she can move on to advanced
algebra topic), SPL starts with the easiest samples and then
gradually includes harder samples while keeping the outliers
off the learning procedure. In the last few years, the effec-
tiveness of SPL has been validated in many tasks, such as
event detection [10], co-saliency detection [11] and mixture
of regression [12]. In this paper, we apply SPL to address the
outliers in mixture model by screening the outliers during the
learning procedure, which has never been explored before.

In summary, this paper presents three major contributions:

• This is the first work of employing Self-Paced Learning
(SPL) to mixture model1, with the aim to effectively
remove the influence of outliers.
• We propose our SPTMM method which integrates SPL

with TMM, and develop an EM based algorithm to
solve the corresponding optimization problem.
• Extensive experiments demonstrate the superiority of

our SPTMM method for density estimation and clus-
tering.

1Here, we adopt the definition of mixture model in statistics, which cor-
responds to the mixture distribution [13].
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2. MIXTURE OF T DISTRIBUTION

The t distribution is defined as follows.
Definition 1. A p-dim random vector xxx ∈ Rp follows

the p-variate t distribution with degrees of freedom ν ∈ R+,
mean µµµ ∈ Rn, and correlation matrix ΣΣΣ ∈ Π(p) if its joint
probability density function (PDF) is given by

t (xxx|ν,µµµ,ΣΣΣ) =
Γ[(ν + p)/2]

Γ(ν/2)νp/2πp/2|ΣΣΣ|1/2

·
[
1 +

1

ν
(xxx−µµµ)

T
ΣΣΣ−1(xxx−µµµ)

]− ν+p2

. (1)

The mixture of t distribution model (TMM) is a linear
superposition of g-component t distribution, i.e.,

φ(xxx;ΨΨΨ) =

g∑
j=1

πjt(xxx; νj ,µµµj ,ΣΣΣj),

where πj is the mixing coefficient of the j-th component and
ΨΨΨ = {πππ,ννν,µµµ,ΣΣΣ}, in which πππ = (π1, π2, . . . , πg)T, ννν =
(ν1, ν2, . . . , νg)T, µµµ = (µµµ1,µµµ2, . . . , µµµg), and ΣΣΣ = (ΣΣΣ1,ΣΣΣ2,
. . . ,ΣΣΣg).

Given the dataset D = {xxxi|i = 1, 2, . . . , n}, where xxxi ∈
Rp denotes a p-dim sample, the model parameters of TMM
ΨΨΨ can be estimated by minimum the negative log likelihood,
i.e.,

min
ΨΨΨ
−

n∑
i=1

log

g∑
j=1

πjt(xxxi; νj ,µµµj ,ΣΣΣj), (2)

which can be solved by EM algorithm [3].

3. SELF-PACED MIXTURE OF T DISTRIBUTION

3.1. Introduction of Our model

Compared with GMM, TMM is able to mitigate the defect
of outliers and thus is more robust to outliers, but it cannot
remove the influence completely [8]. In fact, TMM is still
prone to outliers, especially when the outliers are not close
to the major data samples. To further reduce the influence
of outliers, we introduce the Self-Paced Learning to TMM,
leading to our Self-Paced Learning mixture of t distribution
model (SPTMM). Specifically, based on (2), we introduce a
latent binary variable vi to indicate whether the sample xxxi is
an outlier, and add a sparse regularizer of vi:

E(vvv;ΨΨΨ, λ) = −
n∑

i=1

vi log

g∑
j=1

πjt(xxxi; νj ,µµµj ,ΣΣΣj)− λ||vvv||1,

(3)
where λ is a hyper-parameter, vvv = (v1, . . . , vn)T is a binary
outlier indicator with vi ∈ {0, 1}, and ||vvv||1 enforces the spar-
sity of vvv since there exist only a few outliers in the training

samples. We expect vi = 0 if xxxi is an outlier and vi = 1
otherwise, so that only clean samples contribute to the learn-
ing procedure. Thus, we also refer to vi as learning weight
for xxxi. Note that ΨΨΨ and vvv are unknown and need to be learnt
iteratively.

One interesting observation is that when ΨΨΨ are fixed, vvv can
be easily learnt by using λ as threshold. Specifically, when
− log

∑g
j=1 πj t(xxx; νj ,µµµj ,ΣΣΣj) is larger than λ, the learnt vi

will be 0 (see Section 3.2.1 for technical derivation) and thus
the corresponding xxxi will make no contribution when updat-
ing ΨΨΨ next time. This meets our expectation because the out-
liers are usually far away from the mean of distributions with
large negative log likelihood − log

∑g
j=1 πjt(xxx; νj ,µµµj ,ΣΣΣj).

3.2. EM algorithm for SPTMM

Inspired by Self-Paced Learning (SPL), we tend to start the
learning procedure with the easiest samples and then gradu-
ally use harder samples while preventing outliers from being
used. Hence, in our learning procedure, we initialize λ to a
small value and enlarge λ gradually, until the learnt model
parameters ΨΨΨ remain unchanged, which is shown in Algo-
rithm 1. With each fixed λ, we optimize (3) over vvv and ΨΨΨ
iteratively until the objective in (3) converges. In particular,
in each iteration with fixed λ, we update vvv when fixing ΨΨΨ, and
then update ΨΨΨ when fixing vvv. In the following, we elaborate
on the optimization w.r.t. vvv and ΨΨΨ in detail.

3.2.1. Optimization of vvv

When the model parameters ΨΨΨ are fixed, we estimate vvv by
solving the following problem:

min
vvv∈{0,1}

E(vvv;ΨΨΨ, λ) =

n∑
i=1

vi`i − λ||vvv||1, (4)

where `i = − log φ(xxxi;ΨΨΨ) = − log
∑g

j=1 πjt(xxxi; νj ,µµµj ,ΣΣΣj).
Considering vi ∈ {0, 1}, the problem in (4) can be written as

min
vvv∈{0,1}

n∑
i=1

vi(`i − λ). (5)

It is obvious that the solution to (5) is

vi =

{
0 `i > λ,

1 `i ≤ λ.
(6)

It is worth noting that the training samplesxxxi with larger `i are
more likely to be outliers. To explain more, `i is an increas-
ing function of (xxxi −µµµj)

T
ΣΣΣj
−1(xxxi −µµµj) (see (1)), which is

the Mahalanobis distance between sample xxxi and component
centroidµµµj . Therefore, `i can be used to measure the distance
between sample xxxi and component centroids. As outliers are
far from the component centroids, the training sample xxxi with
larger `i is more likely to be an outlier. According to (6), the
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learning weight vi of outliers would be set to 0, which can
allow us to use only clean samples for learning model param-
eters ΨΨΨ.

3.2.2. Optimization of ΨΨΨ

Fixing vvv, we estimate ΨΨΨ by minimizing the negative log
marginal likelihood (3):

min
ΨΨΨ

E(ΨΨΨ;λ,vvv)⇔ min
ΨΨΨ

n∑
i=1

vi`i − λ||vvv||1 ⇔ min
ΨΨΨ

n∑
i=1

vi`i. (7)

As vi ∈ {0, 1}, (7) is the same optimization problem as (2).
Thus, a similar EM algorithm can be applied to solve (7). For
parameters ΨΨΨ = {πππ,ννν,µµµ,ΣΣΣ}, we set the degrees of freedom
νj (j = 1, 2, . . . , g) to 4 following the practice in [14] and
update {πππ,µµµ,ΣΣΣ} using the following equations:

π?
j =

1

n

n∑
i=1

viτ̂
?
ij , (8)

µµµ?
j =

∑n
i=1 viτ̂

?
ij û

?
ijxxxi∑n

i=1 viτ̂
?
ij û

?
ij

, (9)

ΣΣΣ?
j =

∑n
i=1 viτ̂

?
ij û

?
ij(xxxi −µµµ?

j )(xxxi −µµµ?
j )T∑n

i=1 viτ̂
?
ij

, (10)

where

τ̂?ij =
πit(xxxi; νj ,µµµj ,ΣΣΣj)∑g
j=1 πjt(xxxi; νj ,µµµj ,ΣΣΣj)

, (11)

û?ij =
νj + p

νj + (xxxi −µµµj)
T

ΣΣΣj
−1(xxxi −µµµj)

. (12)

The definitions of τ̂ and τ̂ are given by Peel et al. [3].
Note that the above two sets of variables {π?

j ,µµµ
?
j ,ΣΣΣ

?
j} and

{τ̂?ij , û?ij} are updated in an iterative fashion based on EM
algorithm. More precisely, we update {τ̂?ij , û?ij} in E-step and
update {π?

j ,µµµ
?
j ,ΣΣΣ

?
j} in M-step.

3.2.3. Summary of the Algorithm

The whole optimization algorithm is summarized in Algo-
rithm 1, which has an outer loop and an inner loop. In the
outer loop, we start with small λ and increase λ by λ ← aλ
in each iteration until the model parameters ΨΨΨ remain un-
changed in several steps , which follows the strategy of SPL.
In the inner loop, we update the binary outlier indicator vvv and
the model parameters ΨΨΨ iteratively until the objective in (3)
converges.

4. EXPERIMENTS

In this section, we evaluate our SPTMM model on two tasks:
density estimation and clustering. For density estimation, we

Algorithm 1: Self-paced Mixture of t distribution
Input: dataset D = {xxxi, i = 1, 2, . . . , n}, learning

pace a > 1, number of components g
Output: ΨΨΨj(j = 1, 2, . . . , g)
Initialize ΨΨΨ by the result of k-means.
Initialize λ to the median of `i, i = 1, 2, . . . , n.
while ∆ΨΨΨ ' 000 do

while not converged do
Update vvv = arg maxvvv∈{0,1}E(vvv;ΨΨΨ, λ) by (6).
while not converged do

E-step
Update τ̂ij and ûij by (11) and (12),
respectively.

M-step
Update ΨΨΨ by (8), (9) and (10).

end
end
λ← aλ.

end

use a synthetic dataset, and compare our SPTMM method
with GMM and TMM. For clustering, we use real-world
datasets and additionally include k-means algorithm as a
baseline besides GMM and TMM.

4.1. Experimental results in density estimation

This section is devoted to comparing GMM, TMM and
SPTMM w.r.t. estimating the density of a synthetic dataset.

Firstly, a synthetic dataset is generated with a 3-component
GMM. To evaluate the robustness of GMM, TMM and
SPTMM to outliers, we add 5% outliers2 to the synthetic
dataset. The synthetic dataset is shown in Fig. 1 (a).

The experimental results of GMM, TMM and SPTMM
on the synthetic dataset are illustrated in Fig. 1 (b) (c) (d), re-
spectively. It is obvious that the covariance matrix of GMM is
severely influenced by the outliers. Although TMM reduces
the influence to a degree, the covariance of TMM is still af-
fected heavily. In contrast, our SPTMM model gives much
better estimation for the covariance matrix, since all the iden-
tified outliers are not used in the fitting procedure.

4.2. Experimental results in clustering

In this section, we evaluate the performance of our SPTMM
model and other baselines, including k-means, GMM and
TMM, for clustering on 4 real-world datasets, i.e., Bezdekiris,
Iris, Seeds and Thyroid [16]. Besides, to validate the robust-
ness of these algorithms, we add 5% outliers to each real
dataset. The real datasets without and with 5% outliers are
referred to as Clean and Noisy respectively in Table 1.

2In this paper, we adopt the definition of outliers in [15], i.e., [Q1 −
α(Q3 −Q1), Q3 + α(Q3 −Q1)].
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Fig. 1: (a) is Synthetic dataset with outliers. (b), (c) and (d) are fitting results of GMM, TMM, SPTMM, respectively. The colored lines
represent 99% confidence ellipses.

(a) Bezdekiris

Clean Noisy

MSE W/B DB Dunn MSE W/B DB Dunn

k-means 0.93 0.30 0.62 2.03 2.48 0.75 0.53 1.73
GMM 1.12 0.39 0.74 1.88 2.53 0.78 0.84 0.93
TMM 1.43 0.61 0.29 1.94 2.66 0.88 0.59 1.67
SPTMM 1.51 0.65 0.29 2.78 1.51 0.61 0.26 3.69

(b) Iris

Clean Noisy

MSE W/B DB Dunn MSE W/B DB Dunn

k-means 0.93 0.31 0.57 2.03 2.48 0.72 0.54 1.76
GMM 1.13 0.40 0.74 1.88 2.95 0.98 1.12 1.03
TMM 1.45 0.62 0.28 1.95 2.92 1.07 0.73 1.18
SPTMM 1.45 0.62 0.28 2.68 1.45 0.62 0.28 2.89

(c) Seeds

Clean Noisy

MSE W/B DB Dunn MSE W/B DB Dunn

k-means 2.80 0.28 0.59 2.35 3.55 0.69 0.72 2.06
GMM 2.87 0.28 0.60 2.37 4.67 1.16 1.81 0.63
TMM 2.93 0.29 0.61 2.37 4.66 0.81 1.41 0.89
SPTMM 2.55 0.29 0.61 2.37 2.94 0.53 0.34 2.30

(d) Thyroid

Clean Noisy

MSE W/B DB Dunn MSE W/B DB Dunn

k-means 3.44 2.23 0.69 2.66 3.64 2.50 0.72 2.61
GMM 3.54 2.48 0.59 3.34 3.75 2.79 1.14 1.35
TMM 3.62 2.74 0.57 3.33 3.80 3.02 0.58 3.46
SPTMM 0.98 0.99 0.43 3.80 1.67 1.05 0.43 3.66

Table 1: MSE, W/B, DBI and Dunn of the clustering results on real datasets.

We evaluate the clustering performance of all these al-
gorithms with internal clustering evaluation metrics [17],
including clustering mean squared error (MSE) [18], WSS

BSS
(WSS: within-cluster sum of squares; BSS: between-cluster
sum of squares) [19], Davies-Bouldin index (DB) [20] and
Dunn index (Dunn) [21]. Note that for MSE, W/B, DB,
smaller value indicates better performance while for Dunn,
larger value indicates better performance.

Clustering results reported in Table 1, show that on the
Clean Bezdekiris, Iris and Seeds datasets, our SPTMM
method performs best with half of the evaluation metrics
and on the Clean Thyroid dataset, SPTMM achieves the best
performance with all the evaluation metrics. Besides, we
can observe that on all Noisy datasets, SPTMM significantly
outperforms all the baselines with all the evaluation metrics.
This attributes to that SPTMM can eliminate most outliers
from the fitting procedure.

5. CONCLUSION

In this paper, we depicted a novel model SPTMM which in-
tegrates the Self-Paced Learning mechanism into mixture of

t distribution, in order to improve the mixture models’ abil-
ity of handling outliers. Given the model, we developed an
EM based algorithm that can solve the optimization problem
in SPTMM efficiently. In addition to the mathematical justi-
fication, the experiments also display the value of the model.
The results demonstrated that SPTMM clearly outperforms
K-means, GMM and TMM for estimating the covariance ma-
trix in the distributions. With respect to clustering, SPTMM
is shown to be the best performer in most cases, in particular
for the data with outliers. In the future, we would like to as-
sess if SPTMM can be improved to perform better in a clean
environment.
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