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Abstract—In this paper, we consider a network of sensors in
which a fusion center applies a clustering method over the sensor
measurements. In order to limit their energy consumption, the
sensors transmit their measurements in a compressed form. This
paper proposes a novel clustering algorithm that applies directly
over compressed data, and that does not require the knowledge of
the number of clusters. The proposed algorithm is based on a new
cost function for centroid estimation, and a theoretical analysis
shows that the cluster centroids are the only minimizers of this
cost function. The clustering algorithm then estimates the cluster
centroids by looking for the minimizers of the cost function,
even when their number is unknown. The proposed algorithm
shows performance close to that of the K-means algorithm over
compressed data, without need to know the number of clusters.

I. INTRODUCTION

Wireless sensor networks are now employed in various
applications in military, environmental, or telecommunication
domains, see [1] for a survey. In most of these applications, a
fusion center has to carry out a given processing or learning
task over the collected sensor measurements. In this paper, we
consider clustering as the learning task that should be realized
by the fusion center. The objective of clustering is to separate
the sensor measurements into clusters such that measurements
assigned to the same cluster are close to each other and
far from measurements belonging to other clusters. Several
clustering algorithms such as DB-SCAN [2], OPTICS [3],
and the very popular K-means [4], have been proposed in the
literature.

In order to increase the lifetime of a network, the sensors
must have very low energy consumption. The communication
system that allows the sensors to transmit their data to the
fusion center is responsible for the most important part of their
energy consumption. In order to lower this energy consump-
tion, the data should be transmitted in a compressed form.
Since the objective of the fusion center is not to reconstruct
all the sensor measurements but only to cluster them, we
would like to apply the clustering algorithm directly over
the compressed data. This would avoid complex decoding
operations at the fusion center.

Clustering over compressed measurements was investigated
recently in [5], [6] for the K-means algorithm only. However,
one of the main limitations of the K-means algorithm is that
it requires prior knowledge of the number of clusters. The
objective of this paper is thus to propose a clustering algorithm
that can be applied to compressed measurements, and that does
not need to know the number of clusters.

In model-based clustering algorithms [7], the measurement
vectors that belong to a cluster are modeled as the cluster

centroid corrupted by additive Gaussian noise. It is further
assumed that the cluster centroids and the noise variance
are unknown, but that the number of clusters is known. The
clustering algorithm we propose is based on the same Gaussian
model as in [7]. However, as opposed to [7], our approach
assumes that the number of clusters is unknown, and that
the noise variance is known. This assumption is reasonable in
many applications, for which the noise variance may be either
determined from the physical characteristics of the sensors, or
estimated locally by the sensors [8], [9].

From the Gaussian model, we introduce a new cost func-
tion for clustering over compressed data. Our cost function
generalizes the one introduced in [10] for clustering over non-
compressed data. By a theoretical analysis, we show that,
under asymptotic conditions, the compressed cluster centroids
are the only minimizers of the introduced cost function. It is
worth mentioning that such a theoretical analysis is new and
was not carried out in [10].

The cost function we introduce depends on a weight
function and our theoretical analysis shows that this weight
function has to satisfy certain properties. In this paper, we
choose the weight function as the p-value of a Wald test [11].
This p-value is shown to satisfy the required properties. We
then propose an algorithm that permits to estimate the cluster
centroids by computing the minimizers of the cost function,
even when the number of minimizers is a priori unknown.
The full clustering algorithm we derive from this approach
shows performance close to that of the K-means algorithm
over compressed data and does not need to know the number
of clusters.

The outline of the paper is as follows. Section II describes
the signal model considered for the measurements. Section III
introduces our cost function for clustering and provides the
theoretical analysis. Section IV gives the expression of the
considered weight function. Section V describes the cluster-
ing algorithm over compressed data. Section VI shows the
simulation results.

II. SIGNAL MODEL

Consider a network of N sensors in which each sensor n ∈
{1, · · · , N} collects a measurement vector Yn. The vectors
Y1, . . . ,YN are assumed to be N independent and identically
distributed (i.i.d.) d-dimensional random Gaussian vectors. We
consider that the measurement vectors are split into K clusters
defined by K deterministic centroids θ1, . . . ,θK , with θk ∈
Rd for each k ∈ {1, 2, . . . ,K}. Accordingly, we assume that
for each n ∈ {1, . . . , N}, there exists k ∈ {1, 2, . . . ,K} such
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that Yn ∼ N (θk, σ
2Id) and we say that Yn belongs to cluster

k. In the above model, the noise variance σ2 is the same for
all the measurement vectors Yn. In the following, we assume
that the value of σ2 is known prior to clustering.

Each sensor applies a sensing matrix A ∈ Rm×d to its mea-
surement vector Yn. This produces compressed observations
Zn = AYn, n ∈ {1, . . . , N}, that are then transmitted to
the fusion center. Here, as a first step, we assume that the
fusion center directly observes the compressed observations
Zn, while in practical situations, the received observations
may be corrupted by some quantization or channel noise. More
complex transmission models will be considered in future
works. In the present setting, Zn ∼ N (φk, σ

2AAT ), where
φk = Aθk represents the compressed centroids. Here, the
matrix A is the same for all the sensors and performs com-
pression whenever m < d. The theoretical analysis presented
in the paper applies whatever the considered matrix, and in
our simulations we will consider several different choices for
A.

In the following, we assume that the centroids θ1, . . . ,θK ,
and their compressed versions φ1, . . . ,φK , are unknown. The
objective of this paper is to propose an algorithm that groups
the N compressed measurement vectors Z1, · · · ,ZN into
clusters. The first step of our algorithm consists of estimating
the compressed centroids φ1, . . . ,φK , as we now describe.

III. CENTROID ESTIMATION

In this section, we introduce a new cost function for the
estimation of the compressed centroids φ1, · · · ,φK from
the measurement vectors Z1, · · · ,Zn. We then present our
theoretical analysis that shows that the compressed centroids
φk are the only minimizers of the introduced cost function.

A. Cost Function for centroid estimation

Consider an increasing, convex and differentiable function
ρ : R → R that verifies ρ(x) = 0 ⇒ x = 0. Given an m ×
m positive-definite matrix C, define the Mahalanobis norm
νC(z) =

√
zTC−1z for any z ∈ Rm. First assume that the

number K of clusters is known, and consider the following
cost function for the estimation of the compressed centroids:

J(φ1, · · · ,φK) =

K∑
k=1

N∑
n=1

ρ(νC(zn − φk)). (1)

This cost function generalizes the one introduced in [10] for
centroid estimation when K is known. In [10], the clustering
was performed over i.i.d. Gaussian vectors, and the particular
case C = I was considered. In contrast, our analysis assumes
a general positive-definite matrix C, which will permit to take
into account the correlation introduced by the compression.
In addition, [10] only considers the particular case ρ(x) =
1− exp(−βx), where β is a parameter that has to be chosen
empirically. On the opposite, here, we consider a class of
possible functions ρ, and the properties that these functions
should verify will be exposed in the subsequent theoretical
analysis. Note that the approach of [10] was inspired by the
M-estimation theory [12].

In order to estimate the centroids, we want to minimize
the cost function (1) with respect to the compressed centroids
φ1, · · · ,φK . Since J is convex, ρ is differentiable, and C is
invertible, each centroid φk should verify

N∑
n=1

(zn − φk)w(νC(zn − φk)) = 0 (2)

where the function w : R → R is called the weight function
and is given by w = ρ′. Solving (2) amounts to looking for
the fixed-points hN (φ) = φ of the function hN defined as

hN (φ) =

∑N
n=1 w(νC(zn − φ))zn∑N
n=1 w(νC(zn − φ))

,φ ∈ Rm. (3)

In the following, we show the following result: the centroids
are the only fixed points of hN under asymptotic conditions
and given that the weight function w verifies certain properties.
In addition and perhaps surprisingly, the expression of hN (3)
depends neither on the considered cluster k, nor on the number
of clusters K. The foregoing suggests that, even when K
is unknown, estimating the centroids can be performed by
seeking the fixed points of hN defined in (3). This claim is
theoretically and experimentally verified below.

B. Fixed-point analysis

The following proposition shows that the compressed cen-
troids φk are the only fixed points of hN (3).

Proposition 1. Let φ1, . . . ,φK be K pairwise different
elements of Rm. For each k ∈ J1,KK, suppose that
Zk,1, . . . ,Zk,Nk

iid∼ N (φk, σ
2AAT ) and set N =

∑K
k=1Nk.

Assume that there exist α1, . . . , αK ∈ (0, 1) such that
lim
N→∞

Nk/N = αk. Also assume that the function w is such

that if Z(ξ) ∼ N (ξ, Im) with ξ ∈ Rm, then

E [w(νC(Z(0)))Z(0) ] = 0, (4)
lim
‖ξ‖→∞

E [w(νC(Z(ξ))) ] = 0, (5)

lim
‖ξ‖→∞

E [w(νC(Z(ξ)))Z(ξ) ] = 0. (6)

Then, for any i ∈ J1,KK and any φ in a neighborhood of φi,

lim
∀k 6=i,‖φk−φi‖→∞

(
lim
N→∞

(
hN (φ)− φ

) )
= 0 iff φ = φi,

almost surely.

Proof: The proof is left for a longer version of the paper.

Proposition 1 shows that the centroids are the unique fixed
points of the function hN , when the sample size and the
distances between centroids tend to infinity. This result means
that, at least asymptotically, no other vector than the centroids
can be a fixed point of hN . Based on this result and on the fact
that the expression of hN does not depend on k nor on K,
we now assume that K is unknown. In the following, after
introducing a particular weight function w, we propose an
algorithm that estimates the centroids by computing all the
fixed points of hN .
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IV. WEIGHT FUNCTION

The weight function w(x) = β exp(−βx) considered
in [10] verifies the properties required in Proposition 1.
However, in this weight function, the parameter β must be
chosen empirically and its optimal value varies with the
dimension m and with the noise parameters. A poor choice of
β can dramatically impact the performance of the clustering
algorithm proposed in [10]. On the opposite, here, we propose
a new weight function whose expression is known whatever
the dimension and noise parameters.

A. The Wald Test and its p-value

In addition to avoiding empirical parameters, we want to
define a weight function that makes sense in a clustering
problem. For this sake, consider the problem of testing whether
an observation Zi ∼ N (φ(i), σ

2AAT ) belongs to cluster k,
where φ(i) denotes the unknown centroid of the observation
Zi. For this test, we usually do not have access to the true
centroid φk, but only to an estimate φ̂k. For now, assume that
φ̂k ∼ N (φk, r

2AAT ), where r2 represents the centroid esti-
mation variance. The value of r2 can be calculated analytically
and its expression will be given when describing the clustering
algorithm. In the following, we assume that φ̂k is independent
of Zi. Now consider the following testing problem Observation:Zi − φ̂k ∼ N (φ(i) − φk, (σ2 + r2)AAT ),

Hypotheses:
{
H0 : φ(i) − φk = 0,
H1 : φ(i) − φk 6= 0.

(7)
This problem consists of testing the null hypothesis H0 :
φ(i) − φk = 0 (observation Zi belongs to cluster k) against
its alternative H1 : φ(i) −φk 6= 0 (observation Zi belongs to
cluster k).

A test T is any measurable map from Rm to {0, 1}. Given
z ∈ Rm, the value T(z) returned by T is the index of the
hypothesis considered to be true and we say that T accepts
H0 (resp. H1) at z if T(z) = 0 (resp. T(z) = 1). Given
α ∈ (0, 1), let µ(α) be the unique real value λ such that
Qm/2(0, λ) = α where Qm/2 is the Generalized Marcum
Function [14]. By setting C = (σ2+r2)AAT and according to
[11, Definition III & Proposition III, p. 450], the test defined
for any z ∈ Rm as

Tµ(α)(zi − φ̂k) =

{
0 if νC(zi − φ̂k) 6 µ(α)

1 if νC(zi − φ̂k) > µ(α).
(8)

guarantees a false alarm probability α for the problem de-
scribed by (7). The hypothesis test Tµ(α) is a Wald test [11]
and it was shown to be optimal with respect to several
optimality criteria, see [15] for more details.

We can show that the p-value of the test Tµ(α) is given for
any z ∈ Rm by:

w̃(z) = Qm/2 (0, νC(z)) . (9)

The proof is omitted due to the lack of space. A p-value
function can be seen as a measure of the plausibility of the
null hypothesis H0 given the observation [16, Sec. 3.3] As
a result, in our case, the p-value w̃(zi − φ̂k) measures the

plausibility that the measurement vector zi belong to cluster
k. It can be shown that the weight function defined from (9)
by w(x) = Qm/2 (0, x) verifies the properties required in
Proposition 1, and this is why we will choose it as our weight
function in the remaining of the paper. It is worth noting
that the p-value does not depend on any empirical parameter,
except the false alarm probability α. However, α does not
depend on the dimension nor on the noise distribution, and
in our simulations, we observed that this parameter does not
influence much the performance of the clustering algorithm
we now propose.

V. CLUSTERING ALGORITHM

This section describes our clustering algorithm CENTRE-
X that applies to compressed data. The objective of the
algorithm is to divide the set of received compressed vectors
Z = {Z1, · · · ,ZN} into K clusters, when K is unknown a
priori. The first step of the algorithm consists of estimating
the cluster centroids by looking for all the fixed-points of the
function hN (3).

A. Initialization

Initialize by Φ = {∅} the set of centroids estimated by the
algorithm. Also, initialize byM = {∅} the set of vectors Zk
that are considered as marked, where a marked vector cannot
be used anymore to initialize the estimation of a new centroid,
as described below.

B. Centroid estimation

The centroids are estimated one after the other, until M =
Z . When the algorithm has already estimated k centroids, we
have Φ = {φ̂1, · · · , φ̂k}. In order to estimate the k + 1-
th centroid, the algorithm picks a measurement vector Z?
at random in the set Z \ M and initializes the estimation
process with φ̂(0)

k+1 = Z?. In order to estimate φ̂k+1 as a
fixed point of hN (3), the algorithm recursively computes
φ̂

(`+1)
k+1 = hN (φ̂

(`)
k+1) [12]. At the first iteration, the function w

in hN is given from (9) calculated with r = σ2, because φ̂(0)
k+1

is initialized with a compressed observation. From iteration
2, w is calculated with r = 0, which implicitely assumes
that φ̂(`)

k+1 is very close to the true centroid φk+1. These
choices of w are heuristic, but they lead to a good clustering
performance in our simulations. The recursion stops when
‖φ̂(`+1)

k+1 − φ̂
(`)
k+1‖2 ≤ ε, where ε is a stopping condition. The

newly estimated centroid is given by φ̂k+1 = φ̂
(L)
k+1, where

L represents the final iteration. To finish, the set of estimated
centroids is updated as Φ = Φ ∪ {φ̂k+1}.

Once the centroid φ̂k+1 is estimated, the algorithm marks
all the vectors that belong to cluster k + 1. For this, the
algorithm applies a Wald test to each (Zi−φ̂k+1) ∼ N (φ(i)−
φ̂k+1, σ

2AAT ), i ∈ {1, · · · , N}. This corresponds to applying
the Wald test (8) with r = 0. All the observations Zi that
accept the null hypothesis under this test are grouped into
the set Mk+1. The set of marked vectors is then updated as
M←M∪{Z?}∪Mk+1. Note that the measurement vector
Z?, which serves for initialization, is also marked in order
to avoid initializing again with the same vector. If M 6= Z ,
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Fig. 1. Classification error probabilities of K-means with 10 replicates and
CENTRE-X, for two values of σ, for non-sparse centroids

the algorithm estimates the next centroid θ̂k+2. Otherwise, the
algorithm moves to the fusion step.

C. Fusion

Once M = Z and, say, K ′ centroids have been estimated,
the algorithm applies a so-called fusion step to identify the
centroids that may have been estimated several times from
different initializations. At this step, the algorithm applies
a Wald hypothesis test Tµ(α) to (φ̂k1 − φ̂k2) ∼ N (φk1 −
φk2 , 2σ

2
k,lAA

T ), for all pairs (φ̂k1 , φ̂k2) ∈ Φ × Φ such that
k1 < k2. This Wald test can be derive in a straightforward
way form Section IV-A, and the expression of σk,l is given
in [13]. When Tµ(α)(φ̂k1 − φ̂k2) = 0, the algorithm sets

φ̂k1 =
φ̂k1

+φ̂k2

2 and removes φ̂k2 from Φ. At the end, the
number of centroids K is set as the cardinal of the final Φ and
the elements are re-indexed in order to get Φ = {φ̂1, · · · φ̂K}.

D. Classification

Denote by Ck the set of measurement vectors assigned to
cluster k. Each vector Zi ∈ Z is assigned to the cluster Ck′
whose centroid φ̂k′ ∈ Φ is the closest to Zi, i.e., φ̂k′ =
arg minφ̂∈Φ ‖Zi−φ̂‖. Here, using this condition instead of an
hypothesis test forces each measurement vector to be assigned
to a cluster.

VI. SIMULATION RESULTS

This section evaluates the performance of the CENTRE-X
algorithm from Monte Carlo simulations. In all our simula-
tions, we consider K = 4, d = 100, α = 10−3, and the
observation vectors Yn that belong to cluster k are generated
according to the model Yn ∼ N (φk, σ

2Id), where σ2 is the
noise variance. In the following, we consider various values
of m, and, for each value of m, we measure the classification
error probability over 1000 trials. In all the considered setups,
we compare the performance or our algorithm against the
performance of a K-means algorithm with 10 replicates (in
order to lower initialization issues), and provided with the
correct value of K. We consider the following two setups.
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Fig. 2. Classification error probabilities of K-means with 10 replicates and
CENTRE-X, for two values of σ, for sparse centroids

A. Non-sparse centroids

We first assume that new centroids are generated at each
trial as θk ∼ N (0, b2Id) with b = 2. In this case, the sensing
matrix A is constructed so as to randomly select components
of Yn, that is each row of A contains exactly one value 1, and 0
elsewhere. The classification error probabilities of CENTRE-X
and of K-means with 10 replicates are represented in Figure 1,
for σ = 1 and σ = 2.5. In both cases, we see that the
error probability of CENTRE-X is close but a little degraded
compared to K-means. However, in our experiments, K-means
is evaluated in the most favorable case as it knows the number
of clusters K and is repeated several times, which is not the
case with our algorithm.

B. Sparse centroids

We now assume that the centroids are sparse. At each
trial, a new set of centroids is generated, and each individual
component of each centroid is generated as θk,j ∼ N (0, b2)
(b = 2), with probability 0.2, and is equal to 0 otherwise. The
matrix A is generated once for all the trials for each considered
value of m. This corresponds to random projections, with
Ai,j ∼ N (0,md), i = 1, · · · ,m and j = 1 · · · , d. The
classification error probabilities of CENTRE-X and of K-
means with 10 replicates are represented in Figure 2, for
σ = 0.8 and σ = 1. As for the case of non-sparse centroids,
our algorithm only shows a limited performance loss with
respect to K-means. Compared to K-means, CENTRE-X does
not require prior knowledge of the number of clusters and does
not suffer from initialization issues, at the price of a limited
performance degradation.

VII. CONCLUSION

In this paper, we proposed a new clustering algorithm
that applies over compressed data and that does not need to
know the number of clusters. The clustering algorithm we
proposed looks for the minimizers of a new cost function, and
a theoretical analysis shows that the cluster centroids are the
only minimizers of this cost function. Our clustering algorithm
shows a little performance degradation compared to K-means,
but without need to know the number of clusters.
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