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ABSTRACT

A common smoothness model used in graph based regularization ap-
proaches is to require the energy of signals to be small with respect
to the graph Laplacian of the graph. In this paper, we suggest an
alternative approach which can effectively incorporate the high fre-
quency information of the graph for unsupervised piece-wise smooth
manifold denoising using Spectral Graph Wavelets. Our approach is
based on a novel technique to remove noise from SGW coefficients
estimated from a local tangent space based graph, which allows us
to effectively regularize manifolds with singularities, such as for ex-
ample intersecting manifolds. Experimental results on synthetic and
real datasets in computer vision applications show that our proposed
approach outperforms the state of the art, and is an effective tool to
remove noise from manifolds with complex structures without over-
smoothing at discontinuities.

Index Terms— Manifold Denoising, Graph Signal Processing,
Spectral Graph Wavelets

1. INTRODUCTION

Many important machine learning problems require processing data
on irregular, unstructured domains. Manifold learning methods [1,
2, 3, 4] address this problem by assuming that the data lives on a
low dimensional manifold, and develop efficient algorithms to learn
manifold global structure. However, the assumption that real-world
data lies strictly or very close to a manifold does not often hold in
practice. Manifold denoising methods [5] [6] were proposed in order
to address this limitation, yet most of them over-fit or under-fit either
the local or the global manifold structure for a non-trivial amount of
noise in the data.

Similar to the works mentioned above, our ultimate goal, given
a set of points, is to learn a manifold from them, but we focus on
the first step of denoising the positions of the points. In our recent
work [7] we showed that some of these limitations can be overcome
using the spectral and vertex domain localization power of Spectral
Graph Wavelets (SGW) [8]. To apply Spectral Graph Wavelets on
high dimensional, unstructured data, we proposed to build a graph in
which each vertex corresponds to one of the noisy observations, with
edge weights between two vertices a function of the Euclidean dis-
tance between the corresponding observations in the ambient space.
Then we applied Spectral Graph Wavelets to several graph signals,
each representing one of the coordinates of a vertex in one of the di-
mensions of the ambient space. Denoising was then performed inde-
pendently for each of the graph signals by discarding high frequency
SGW transform coefficients, an approach that was justified by show-
ing that for manifolds with sufficient smoothness properties, the co-
ordinate dimensions of the signals are also smooth. The suggested
approach was shown to be effective under a smoothness model in
which a signal f is smooth if its graph Laplacian regularizer fTLf

is small. However, such an approach is not well-equipped to pro-
cess manifolds with complex geometric structure such as manifolds
with singularities, which may contain valuable information in the
high frequency bands. While this is a common smoothness model
in manifold learning and manifold denoising, we typically observe
that for complex manifolds some important information may be lost
when high frequency content is discarded [9], [10].

In this paper, we propose a new approach for unsupervised de-
noising of piecewise-smooth manifolds that generalizes our prior
work to data with complex structure. Our regularization framework
again uses Spectral Graph Wavelets, but we employ a fundamentally
different approach than used in [7]. First, we propose a novel graph
construction for SGW processing, which encodes the local geomet-
ric structure on the graph using a local tangent space affinity graph
based on Tensor Voting [11], thus incorporating higher order infor-
mation to the estimated spectral graph wavelets coefficients. In our
prior work [7] a simple nearest neighbor graph in the ambient space
was used. Second, we denoise by solving a diffusion process on the
graph through the application Tikonov regularization in each esti-
mated frequency band for each of the manifold coordinates. This
is in contrast with our prior work, where we simply set to zero the
high SGW frequencies before reconstructing the estimated denoised
set of points. Note that the SGW transform is not critically sampled,
and thus a coefficients in each band is associated to each node of the
graph. In order to denoise the SGW coefficients we use a second
graph, derived from the original graph, and such that the spectral en-
ergy is more tightly localized, which allows us to better handle com-
plex manifolds at finer scales. Experimental results on both synthetic
data-set and computer vision applications demonstrate that our ap-
proach significantly outperforms state of the art manifold denoising
algorithms in estimating noisy manifolds with complex geometric
structure.

This paper is organized as follows: in Section 2 we summarize
the related work. Section 3 provides an overview of Spectral Graph
Wavelets and Tensor Voting and the Tensor Voting Graph which are
used for constructing the proposed graph. In Section 4 we describes
our new approach for denoising manifolds with singularities. The
experimental results are provided in Section 5 and in Section 6 we
conclude our work.

2. RELATED WORK

Existing manifold denoising methods suffer from at least one of the
following limitations: i) They tend to over-penalize either the lo-
cal or global manifold structure, thus discarding significant features
of the manifold; ii) They are sensitive to parameter selection on the
graph, such as the choice of parameter k in a k nearest neighbor spar-
sification of the original similarity graph; iii) They make restrictive
model assumptions, for example about manifold smoothness, which
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do not take into consideration the possible presence of discontinu-
ities [9].

In our previous work, MFD [7], we proposed an effective way to
perform manifold regularization on noisy manifolds that can better
handle over-fitting or under-fitting by using Spectral Graph Wavelets
as a tool that provides localization in the vertex and spectral domains.
However, the suggested approach does not take into account more
general classes of manifolds with singularities, for which critical in-
formation may manifest itself in the higher frequencies of the graph.
For instance, in numerous computer vision application, (e.g motion
segmentation), input features are observed to lie on multiple mani-
folds which may be intersecting [10], [12]. As another example, in
molecular structure analysis in biology the data points have been ob-
served to be piecewise smooth or even with a non-manifold structure
[13]. Thus all the methods discussed above overlook a large class of
piece-wise smooth manifolds that can occur in many applications.

3. PRELIMINARIES

We start with preliminary mathematical notations and definitions of
Graph Signal Processing. Consider a set of points x = {xi} , i =
1, ...N,xi ∈ RD , which are sampled from an unknown manifold
M . For each xi ∈ M , let TxiM denote its tangent space, and
let Oi be the subspace that corresponds to the local tangent space
estimate of TxiM . An undirected, weighted graph G = (V,W ) is
constructed over x, where V corresponds to the nodes and W to
the set of edges on the graph. In this work, the adjacency matrix
W = (wij), consisting of the weights wij between node i and node
j, is constructed based on local tangent space similarity filtered using
the Gaussian kernel function as follows:

wij =

{
w̃ijF (Oi, Oj) if xj ∈ kNN(xi)

0 else (1)

where

w̃ij =

{
exp

(
−||xi−xj ||22

2σ2
d

)
if xj ∈ kNN(xi)

0 else
(2)

kNN(xi) denotes the k nearest Euclidean neighbors of xi, || ||
denotes theL2 distance between the points xi,xj , and σ2

d is the RBF
parameter. The local tangent space affinity function F (Oi, Oj) is
chosen based on the maximal principal angle between the sub-spaces
Oi, Oj as follows [14]:

F (Oi, Oj) = minu∈Oimaxṽ∈Oj 〈u, ṽ〉 (3)

where the estimate for the local tangent space is provided by Tensor
Voting [15], and the affinity is estimated using the Tensor Voting
Graph [16]. In order to characterize the global smoothness of a
function fr ∈ RN , we define its graph Laplacian quadratic form
with respect to the graph as:

|| 5 fr||2 =
∑
V (i,j)

wij(fr(i)− fr(j))2 = fTr Lfr, (4)

where L denotes the combinatorial graph Laplacian, defined as L =
D−W, with D the diagonal degree matrix with entries dii = d(i),
where d(i) is the degree of the node i. The eigenvalues and eigenvec-
tors of L are λ1, . . . , λN and φ1, . . . , φN , respectively. The graph
Fourier transform (GFT) f̂r of the function fr (which is a function
over the vertices of the graph G), is defined as the expansion of fr
in terms of the eigenvectors φ of the graph Laplacian, so that for

frequency λl we have: f̂r(λl) =
∑
i fr(i)φ

∗
l (i). Note that in prac-

tice, instead of x, we observe a set of noisy points x̃ that do not lie
strictly on the manifold. In order to learn the manifold M we wish
to denoise the coordinates of x̃ to obtain an approximation x̂ of the
noise-free coordinates.

3.1. Spectral Graph Wavelets

Spectral graph Wavelets (SGW) [8] define a scaling operator in the
Graph Fourier domain introduced in the previous section. SGWs
are constructed using a kernel function operator Tg = g(L) which
acts on a function fr by modulating each of its Fourier modes:
̂Tgfr(λl) = g(λl)f̂r(λl). Given a function fr , the wavelet coeffi-

cients take the form:

Ψfr (s, n) = (T sg fr(n)) =

N∑
l=1

g(sλl)f̂r(λl)φl(n). (5)

The SGW can be computed with a fast algorithm based on approxi-
mating the scaled generating kernels by low order polynomials. The
wavelet coefficients at each scale can then be computed as a poly-
nomial of L applied to the input data. When the graph is sparse,
which is typically the case under the manifold learning model, the
computational complexity scales linearly with the number of points,
leading to a computational complexity of O(N) [8] for an input sig-
nal fr ∈ RN . Including a scaling function corresponding to a low
pass filter operation, SGWs map an input graph signal, a vector of
dimension N , to N(J + 1) scaling and wavelet coefficients, which
are computed efficiently using the Chebyshev polynomial approxi-
mation.

We will also use the following definitions

Definition 1 LetN (n,K) denote the set of vertex n’s neighbors on
the graph that are within K hops away from n.

Definition 2 Let WN (K) and LN (K) denote the affinity matrix and
its corresponding Laplacian, which are obtained using affinity func-
tion (1) and connecting all vertices i on the graph that are N(n,K)
hops apart on G from n for each n ∈ V .

As an example for the definitions above, for K = 1 we have that
WN (K=1) = W and LN (K=1) = L.

3.2. Local Tangent Space Estimation

For the local tangent space estimation, we use Tensor Voting [15],
and the Tensor Voting Graph [16] for the local tangent space affinity
F (Oi, Oj). Given two point xi,xj the Tensor vote from xj to xi is
given by:

Tij = exp
−||xi−xj ||

2
2

σ

(
I− (xi − xj)(xi − xj)

T

||xi − xj ||22

)
(6)

and the local information accumulated at each point is

Ti =
∑

xj∈B(xi,σ))

exp
−||xi−xj ||

2
2

σ

(
I− (xi − xj)(xi − xj)

T

||xi − xj ||22

)
(7)

where I is the D ×D identity matrix, Ti is a Semi-Positive matrix,
andB(xi, σ) is a ball of radius σ around xi which contain all points
within distance equal or smaller σ from xi. for clarity, we modified
the sentence as follows: From the Eigendecomposition of each Ti

we obtain a set of eigenvalues {αik}Dk=1 , αi1 ≥ αi2... ≥ αiD and
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their corresponding eigenvectors {êik}Dk=1. Note that across dif-
ferent samples, the tensor Ti quantifies the potential information at
each point xi as the samples move along the normal directions of the
manifold. Using the eigendecomposition of each tensor, the tensor
voting graph can be constructed. The tensor voting graph employs a
graph construction in which the affinity between points on the graph
corresponds to the contribution that was made to the tangent space
point estimation by the neighboring points that participated in the
voting process. For more details we refer to [15], [16].

4. PROPOSED APPROACH

We now present our denoising approach for denoising manifolds
with singularities. In our graph construction, each vertex corre-
sponds to one of the noisy observations of the manifold, and edge
weights that are based on local tangent space distance affinity (de-
fined in (1)). After constructing the local tangent space based graph,
we take the SGW transform using low order polynomials to en-
sure tight vertex localization of the SGW coefficients themselves.
Denoising the Spectral Graph wavelet coefficients Ψ̃f̃r

(s(j), n),
n = 1..N is performed independently for each of the SGW bands
Ψf̃r

(s(j)), s(j), 2 ≤ j ≤ J , and for each r, 1 ≤ r ≤ D corre-
sponding to each noisy graph signal f̃r(), f̃r(n) = fr(n) + εr(n),
i.e., the noisy values of all sampled points in dimension r. At the
final stage, we take the inverse spectral wavelet transform of the
denoised spectral graph wavelet coefficients Ψ∗fr(s(j)) to obtain the
denoised graph signal f̂r(), which corresponds to the manifold coor-
dinate values of dimension r. The full reconstructed manifold points
are provided by x̂n =

(
f̂1(n), f̂2(n)...f̂D(n)

)
, for each point x̂n.

A brief description of the proposed algorithm and a pseudo code is
provided next.

4.1. Description of the Proposed Algorithm

The main idea of Algorithm 1 is to denoise the SGW coefficients
Ψ̃f̃r

(s(j)) that correspond to the vertex and spectral localization en-
coded in the Laplacian LN (j) obtained form WN (j). For each co-
ordinate dimension r and for each SGW bands Ψf̃r

(s(j)), j, 2 ≤
j ≤ J we apply the Tikhonov regularization directly to the SGW
coefficients

minΨfr (s)

{
||Ψfr (s)−Ψf̃r

(s)||22 + γΨT
fr (s)LN (j)Ψfr (s)

}
(8)

Using equality (19) in [17] and replacing the graph signal f̃r with
the SGW band coefficients Ψf̃r

(s), it can be shown that the optimal
solution to this problem is

Ψ∗ f̃r (s, n) =

N∑
l=1

[
1

1 + γλjl
]Ψ̂f̃r

(s, λl)φl(n) (9)

where Ψ̂f̃r
(s, λl) is the Graph Fourier transform of Ψf̃r

(s). To solve
this problem efficiently, we use a few steps of a diffusion process on
the fixed graph WN (j), by solving:

Ψ∗ f̃r (s(j)) = (I + γLN (j))
−1Ψf̃r

(s(j)) (10)

Note that one step of a diffusion process on the graph is equivalent
to solving Tikhonov regularization [6]. Thus, in the denoising ap-
proach we treat the SGW coefficients as graph signals themselves,

simultaneously providing localized vertex and spectral domain in-
formation of the graph signal at different bandwidth, to which de-
noising is applied (to all spectral bands covering the spectral infor-
mation of the graph, i.e the graph eigenvalues). This strategy allows
us to efficiently regularize the manifold in fine scales. We note that
the proposed graph construction allows us to apply denoising using a
novel piece-wise smooth model rather than the standard smoothness
model requiring a small energy of the graph Laplacian with respect
to the graph signal defined on it. We note that Tikonov regulariza-
tion was used in this in this case due to its well known connection
with diffusion processes and its effectiveness in smoothing the SGW
coefficients. However for certain classification tasks, l1 type regu-
larization based methods may be considered.

Algorithm 1: Denoising manifolds with singularities
Data: The data set x̃ , σ is the Tensor Voting scale, k nearest

neighbors on the local tangent space, m - order of
Chebyshev polynomial approximation

1 Construct W based on local tangent space distance as in
Equation 1. Construct L from W, and LN (j) from WN (j)

for each j = 2..J
2 for r ← 1 to D do
3 Assign the corresponding coordinate values f̃r to its

corresponding vertex on the graph. ;
4 Transform the noisy graph signals f̃r using SGW.
5 for j ← 2 to J do
6 Solve (10) for SGW coefficients Ψf̃r

(s(j)) with
respect to LN (j).

7 Take the inverse spectral wavelet transform.
Result: The reconstructed manifold points x̂.

5. EXPERIMENTAL RESULTS

We show experimental results on manifolds with singularities in-
cluding synthetic and real datasets. We compare our method to state
of the art denoising methods, and evaluate the effect of denoising
in terms of its effect on the local geometric structure, as well as in
clustering applications. In our experiments we m = 5 as the or-
der of the Chebyshev polynomial approximation and J = 5 as the
number of scales the SGW transform. For the choice of k nearest
neighbor graph we used k = 20 in all the synthetic datasets experi-
ments. An appealing property of our approach, also similar to [7],
is its robustness to k nearest neighbor selection on the graph, lever-
aging the vertex and frequency localization properties of SGW. To
solve (10) we used the implicit Euler with γ = µδt where µ = 1 is
the diffusion constant and δt = 0.25 is the time step.

5.1. Experimental results on intersecting manifolds

For the synthetic datasets, all manifolds were sampled using a
uniform distribution, and all dimensions were contaminated with
isotropic Gaussian noise. The effect of denoising in the local inter-
section area can be seen in Figures 1 and 2. Table 1 compares the
local tangent space error for all points before and after denoising,
showing a significant reduction in the local tangent space estima-
tion error using our denoising approach. We also show the effect
of denoising in terms of clustering accuracy before and after de-
noising of two intersecting spheres in Table 2, showing significant
improvement after denoising.
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Data Noisy Data Denoised data
Intersecting Circles 10.81 5.8

Table 1. Average error of local tangent space estimation before and
after denoising.

Data Noisy Data Denoised data
Clustering accuracy 86% 96 %

Table 2. Clustering accuracy of two intersecting spheres before and
after denoising

5.2. Denoising Motion Capture Data

We experiment with denoising real data from the CMU motion cap-
ture dataset, which is a dataset of human motion sequences. We
choose sequences from subject 86, and contaminate the data using
Gaussian noise of variance 0.2 in all dimensions. The chosen se-
quences are mixed and correspond to different motions, therefore
can be possibly viewed as a manifold with singularities [10]. Ta-
ble 3 shows a comparison of the denoising results of our method in
terms of RMSE error to other existing manifold denoising methods.
Note that our approach is competitive with MFD, while in our pro-
posed approach we do not rely on thresholding the number of bands
as in [7], which makes our proposed method relatively less sensitive
to parameter selection.

5.3. Application to Motion Segmentation

We also test our framework on a noisy set of feature points in the
problem of motion segmentation. In this problem, we are given a set
of feature points that are tracked through a sequence of video frames.
We evaluate our regularization method on the Hopkins 155 motion
database, where the goal is to segment a video sequence into multi-
ple spatiotemporal regions corresponding to different rigid-body mo-
tions. We test the robustness of our method on the three motion data,
which is more challenging, since it contains more intersections be-
tween the manifolds that represent different objects. In practice, the
feature trajectories would be almost always corrupted, and thus we
contaminated the feature trajectories using a large amount of Gaus-

(a) (b)

(c)

Fig. 1. Experimental results on two noisy intersecting circles (a)
Noisy circles (b) Results with our new denoising method (c) Zoom-
ing into the local intersection area.
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Fig. 2. Experimental results on noisy intersecting planes (a) Noisy
intersecting planes (b) The denoised planes using our method.

Method/RMSE Mocap data
Proposed 6.5
MFD [7] 7.2
MD [6] 32.5
LLD [5] 14.5

Table 3. RMSE error on Mocap data

sian noise in all dimensions with variance 0.2. After performing
regularization using our method we construct a new affinity graph
using the denoised features and perform Spectral Clustering [19].
We compare our method to SSC [18] which is the state of the art
method for clustering multiple linear intersecting manifolds. The
comparison of our method in Table 4 shows that our regularization
achieves significantly better classification accuracy than the state of
the art.

6. DISCUSSION

We presented a new approach for unsupervised denoising of non-
linear piecewise-smooth manifolds. Our approach significantly ex-
tends previous work in unsupervised manifold denoising, by using
a novel graph construction that effectively encodes local geomet-
ric structure in the computed SGW coefficients, leading to an ef-
fective denoising framework on a large class of complex manifolds
and moreover is not restricted to signals where the energy of the
graph Laplacian is small. Experimental results on a range of both
synthetic and real datasets showed that our suggested method signif-
icantly outperforms the state of the art manifold denoising methods.
Future work includes an explicit handling of boundary conditions
[20].

Method Accuracy Three Motions
SSC [18] Mean 74.1%

Median 81.2%
Proposed Mean 80.4%

Median 85.2%

Table 4. Clustering accuracy (%) of different methods on the Hop-
kins 155 motion segmentation database distorted with severe amount
of noise.
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