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ABSTRACT

The ridge regression has been widely applied in multiple do-
mains and gains the promising performance. However, due to
the unavailability of labels, the ridge regression easily incurs
the trivial solution towards unsupervised learning. In this pa-
per, we investigate unsupervised feature selection by virtue of
an uncorrelated and nonnegative ridge regression model (UN-
RFS). To be specific, a generalized uncorrelated constraint
on the projection matrix, and a nonnegative orthogonal con-
straint on the indicator matrix are imposed upon the proposed
regression model. With the proposed method, the most uncor-
related features on the embedded Stiefel manifold is exploited
for feature selection and trivial solutions of projection matrix
are avoided as well. Besides, equipped with a generalized
scatter matrix, the proposed uncorrelated constraint is supe-
rior to conventional uncorrelated constraint, since the closed
form solution can be achieved directly. In addition, owing
to the nonnegative of real labels, the nonnegative orthogonal
constraint is employed to suppress the indicator matrix such
that the learned labels confront to reality further.

Index Terms— Feature selection, ridge regression, gen-
eralized uncorrelated constraint, nonnegative labels

1. INTRODUCTION

As technologies develop rapidly, a large number of data
are generated with high dimensionality. However, most of
these features are inessential to their topics, but aggravate
the burden of both computation and memory vainly. There-
fore, the researches on feature selection are of great signifi-
cance, which dedicate to selecting the most valuable features
from original ones. Since the labels of instances are labori-
ous and expensive to be acquired in most occasions, unsuper-
vised learning becomes more practical for feature selection,
which is also under hot investigation in the domains of ma-
chine learning, data mining and pattern recognition, etc. Lots
of efforts have been made for unsupervised feature selection,
which are generally divided into three categories, including
filter methods [1, 2, 3], wrapper methods [4] and embedded
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Fig. 1. An instance from Imm40 with number of selected
features varying in {128, 256, 384, 512, 640, 768, 896, 1024}
from left to right.

methods [5, 6, 7, 8, 9]. Essentially speaking, filter methods
utilize statistical properties of data to rank the ability of each
feature in preserving the intrinsic structure of data. As for
wrapper methods, which incorporate feature selection into
learning algorithms, they usually depend on specific classi-
fiers tightly. Embedded methods are considered more ratio-
nal than aforementioned ones, because intrinsic structure of
original data tends to existing in the manifold rather than the
ambient Euclidean space. Consequently, we propose a novel
embedded based approach in this paper.

Although plenty of methods concerning unsupervised fea-
ture selection have been put forward recently, their perfor-
mance can still be improved based on three points: (i). most
of current approaches learn the labels via spectral analysis,
which requires constructing a similarity matrix among data
with a high cost of computation; (ii). the unavailability of
real labels makes the ridge regression model towards unsu-
pervised learning easily encounter a trivial solution, i.e., null
projection matrix; (iii). the common orthogonal or uncorre-
lated constraint makes the regression models with regulariza-
tion terms difficult to tackle. Therefore, we propose a novel
unsupervised feature selection via evolving the conventional
ridge regression model, and main contributions of this paper
are highlighted as follows.

e A generalized uncorrelated constraint is imposed to
the ridge regression model, which makes the proposed
method equip with the closed form solution, and ex-
ploits the uncorrelated features, i.e., features with little
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interrelated information, on the embedded Stiefel man-
ifold meanwhile.

e A nonnegative orthogonal indicator matrix is under in-
vestigation to acquire the pseudo labels for unsuper-
vised feature selection, and the £3 ;-norm is employed
to ensure the row-sparsity of projection matrix.

e An efficient algorithm is designed to achieve the pro-
posed feature selection method, and extensive experi-
ments are conducted to verify the effectiveness and su-
periority of the proposed method.

Notations: Tr(M) denotes the trace of matrix M. M7’
denotes the transpose of M. | M||r denotes the F-norm of
M. I, is an n x n identity matrix. 1 = [1,1,---,1]T €
R H=1I, — %llT is defined as a centering matrix. M’
denotes the i-th row of matrix M, while M; denotes the j-
th column of M, and M;; denotes the entry in ¢-th row, j-th
column of M. For any matrix M € Rxe jts {3 1-norm is

d c d )
defined as [ Mllg,1 = >° [ >0 M3 = 37 [ M.
; j i=1

i=1 j=1

2. METHODOLOGY

Suppose that X = [x;,X2, -+ ,X,] € RZX™ represents
an original dataset, which contains n d-dimensional instances
and belongs to ¢ clusters. Y € R™*¢ preserves binary real
labels, where Y;; is set to 1 if the x; belongs to j-th clus-
ter, and O otherwise. The classical ridge regression model is
represented as:

min [XTW +1m" — Y|[§ + oW (1

where W € R%*¢ is the embedded subspace; « is a regular-
ization parameter, and m € R°*! is the bias. With this model,
the intrinsic structure of data could be explored on the man-
ifold. However, the label matrix Y of data in unsupervised
learning is unavailable, which makes problem (1) easily incur
a trivial solution, i.e., W is null, provided that 1m? =Y.
In order to address this problem, we present a novel ridge re-
gression model specifically for unsupervised learning, which
is formulated as follows:

Jmin [ XTW + Im” — F[[f + o[ W
st. WISYW =1, FTF =1.,F >0

where W is imposed by a generalized uncorrelated constraint
with a generalized scatter matrix Sgg) =S;+G, where S; =
XHXT is the common scatter matrix, and G depends on the
regularization terms of the final model. With this constraint,
(i). the trivial null solution of projection matrix is avoided;
(i1). the uncorrelated features are exploited, since the covari-
ance matrix of projected dimensions are orthogonal to some

extent. (iii). the optimization of model (2) is simplified, since
the ingredient of regularization is considered as well, which
makes several terms integrally be a constant.

In supervised learnings, F' € R™*¢ serves as the indicator
matrix which preserves the cluster information, and defined
as F = Y(YZY)~z. This operation indicates that any label
matrix could be of orthogonality, i.e., FTF = I.. Based on
this, we spontaneously impose an orthogonal constraint to F
in unsupervised learning. Meanwhile, since real labels are
nonnegative, F' should be nonnegative so as to approximate
the ground truth as much as possible.

Since ||[W||3 is utilized to measure the value of i-th fea-
ture, a row-sparse W is required usually. Considering the ef-
fectiveness of /5 -norm serving as sparsity regularization has
been verified in [10] and employed in plenty of approaches
[8,7, 11, 12, 13], £3 1-norm is also employed in the proposed
method. Consequently, the final UNRFS is formulated as:

i [[XTW 4+ 1m” = F|[f + oW + 5[W(aa

st. WISP'W =1, FTF =1.,F >0
3)
where (3 is another regularization parameter. The generalized

scatter matrix Sgg) in problem (2) is specifically defined as

SgD), where G = al; + SD is the overall re-weighted matrix
of regularization terms in model (3), and D is a d x d diagonal

trix with D;; = ————(c = 0,i =1,2,--- ,d).

matrix wi i 2/ TWiiTe (E 30 y 45 ) )
This generalized uncorrelated constraint contains two

terms, i.e., WZ'S;W and W7 (al; + SD)W. When « and

[ are small values, the first term dominates WTS£D)W,
which makes the projected dimensions uncorrelated to each
other to a great extent, since the first term, i.e., the covariance
matrix of projected dimensions, extremely approaches to or-
thogonal. Besides, this constraint equips problem (3) with the
closed form solution, and it will be intuitively reflected in the
optimization procedure.

3. OPTIMIZATION

3.1. A Counterpart of Problem (3)

First, we optimize the bias m to simplify the problem (3).
Denote the Lagrangian function of Eq. (3) w.r.t. m as £(m).
According to the extreme value condition, the derivative of
L(m) is zero at the optimal point, i.e., % = 0, thus the
optimal m could be achieved. This optimal bias essentially
centers the estimated errors. Besides, according to Theorem
1 in [10], ||[W]|2,1 in problem (3) could be replaced by its re-
weighted counterpart, i.e., Tr(W?DW). Thus, problem (3)
is addressed by solving the following counterpart:

min [H(XTW — F)||%2 + aTr(WTW) + STr(WTDW)

st. WISPW — I FTF = I, F > 0
“4)
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3.2. Optimize F' with Fixed W
With W being fixed, problem (4) can be transformed into:

Tr(FTHF — 2FTHX"W) )

min
FTF=I. F>0

Due to the non-convexity of FTF =1, the problem above is
difficult to solve directly. Consequently, we could relax this
problem into another one:

min Tr(FHF — 2F"HX" W) + %HFTF ~LlF ©

For problem (6), F' would satisfy the orthogonality pro-
vided that v — co. Considering the Lagrangian function of
Eq. (6), it is described as follows:

minTr(FTHF—QFTHXTWH—%||FTF—IC||%—Tr(AFT)

F>0

@)
where A > 0 is the Lagrangian multiplier matrix, and A €
R™>¢. In order to achieve the optimal solution of F, the
Karush-Kuhn-Tuckre (KKT) condition of Eq. (6) is neces-
sary to be satisfied, i.e.,

{ 9HF — 2HX'W + 29(FFIF - F) - A =0 ®)

(VZ,]) Fij 2 0, Aij 2 0, AijFZ'j = 0

So, depending on the equations and inequations above, the
indicator matrix F' could be updated by

F.. (’YF)z'j
ij T T
(HF — HX' W ++FF"F);;

Fi; = €))

Noting that the achieved F is an approximate optimal so-
lution to problem (5), and it needs to be normalized so as to
satisfy (FTF);; = 1(i = 1,2,--- , ¢) in practice.

3.3. Optimize W with Fixed F’

Considering the generalized uncorrelated constraint, i.e.,

WTS{”)W = I, problem (4) with fixed F holds the follow-
ing deduction:

min [H(XTW — F)||%2 + aTr(WTW) + STr(WTDW)
st WISPwW =1,
= nvl\i]nTr(WTXHXTW — 2WTXHF + FTHF)
+aTr(WTW) + BTe(WTDW) s.t. WTS{PW =1,
& max Tr(W"XHF) s.. WIsPIW =1,
) (10)
Due to the uncorrelated constraint WTSED)W = I,

problem (10) is greatly simplified into the last formulation
above, and we could address it by solving

max Tr(QTB) (11)

Q'Q

where

Q=(s?)w, B= (V) iXHF  (12)
The optimal Q can be achieved according to Lemma 1, and
thus based on the definition of Q hereinbefore, the optimal

W is achieved by W = (824 Q.

Lemma 1. The optimal solution Q to problem (11) is
achieved by

Q=uv?T (13)

where U and V consist of singular vectors of compact SVD
decomposition of B defined in Eq. (12) corresponding to its
left and right singular values, respectively.

Algorithm 1 Algorithm to solve the proposed UNRFES (3)

Input: Given data X € Raxn, clustering number ¢, number
of selected features h, coefficients «, 8 and ~.
Initialize a random and normalized matrix F € R"*¢
satisfying F > 0, Vi, ||F;|o = 1; D = 153
Repeat: B
Calculate S\ = XHX” + o1, + 8D.
Calculate B with Eq. (12).
Calculate Q by solving problem (11).
Update W by W = (SED))_%Q.
Update F by Eq. (9).
Normalize F to ensure (F'F);; =1,(i =1,2,--- ,c).
Update
: 1 1 1
D = dias(; 7 sviwel e v
until convergence
Output: Calculate and sort |[W¢|2(i = 1,2,--- ,d) in the
descending order, then select the top / ranked features.

A T

An alternative algorithm for solving problem (3) is sum-
marized in Algorithm 1, which outputs the most h valuable
features selected by the proposed UNRFS.

4. EXPERIMENTS

In this section, we conduct experiments to illustrate the
superiority of the proposed method. Specific schemes for ex-
periments involving datasets, compared methods and some
settings are introduced at first.

Datasets: Columbia University Image Library (COIL20)
[14], Imm40 [15], Binary Alphabet (BA) ! and Pixraw10P 2.

Competitors: Seven state-of-the-art approaches are com-
pared including MCFS [5], JELSR [7], NDFS [8], UDFS
[11], SOGFS [12], RSES [16] and LS [17].

Settings: Two metrics including clustering accuracy
(ACC) [18] and normalized mutual information (NMI) [19]

http://www.cs.nyu.edu/~roweis/data.html
Zhttp://featureselection.asu.edu/datasets.php
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Fig. 2. k-means clustering accuracy on four benchmarks w.r.t. different numbers of selected features.

Table 1. Comparisons on ACC=std (%) and NMI=std (%) with 100 selected features.

] \Datasets OURS  SOGFS[12] JELSR[7] RSFS[16] NDFS[8] UDEFS[11] MCFS[5] LS[17]

BA 41.86+1.9 36.66+1.1 38.43+1.6 38.13+0.9 3539+1.3 37.68+1.1 38.84+1.1 40.22+1.8

ACCtstd | Pix10P  86.40+6.9 64.20+£5.4 58.35+5.0 59.25+5.0 40.75+8.5 63.85+5.5 76.45+10.5 71.85+8.3
(%) COIL20  60.15+3.9 41.73+1.9 15.984+1.8 47.094+3.1 54.674+4.2 50.2542.8 49.69+3.4 55.21+4.5
Imm40  50.27+2.6 37.0842.0 41.734+2.8 46.25+3.1 40.91+1.3 38.37+1.4 49.29+29 46.37+2.6

BA 57.89+0.7 53.03+£0.7 53.44+0.9 54.41+0.7 50.45+0.5 53.56+0.6 55.41+0.6 56.07+0.7

NMI+std | Pix1OP  90.56+4.1 70.54+3.3 65.1043.1 67.08+4.4 53.02+7.9 72.68+3.4 83.17+5.6 81.46+5.3
(%) COIL20 73.55+1.5 50.62+1.4 19.894+2.4 62.61+1.5 67.67+2.3 60.84+1.3 62.72+1.9 67.07+1.7
Imm40  72.65+1.3 62.88+1.1 67.834+2.1 70.78+1.8 65.394+0.7 64.03+0.8 72.01+1.2 70.73+1.9

are employed to measure the performance among all com-
parisons. Both of them indicate the better performance with
a larger value. Parameter + in the proposed method is set to
100, which is large enough to ensure the orthogonality of F.
To achieve the best performance, « is searched in the range of
small values from 0.01 to 0.1 with the interval of 0.01, while
B is searched from 0.1 to 1 with the interval of 0.1. In order
to avoid the occasionality triggered by random starting-points
in k-means, clustering with the same selected features are
performed for 20 times, and the average results are recorded.

4.1. Comparison on Performance

Fig. 2 shows the results of clustering accuracy with dif-
ferent numbers of selected features which range from 100 to
200 with 20 intervals, and the red lines with asterisks repre-
sent the performance of the proposed UNREFS. It is clear that
UNRES is totally beyond others on the datasets. Besides, we
also compare NMI. Table 1 records the results of both ACC
and NMI with standard deviations, and the number of selected
features is set to 100. The best results are bold, and it is obvi-
ous that UNRFS gains considerable improvement than others.
In addition, Fig. 1 shows an instance sampled from Imm40
with different numbers of features selected by UNRFS and
SOGEFS [12]. Distinctly, the proposed method selects more
valuable features (e.g., face, eyes, nose, etc) primarily, specif-
ically with less selected features, while SOGFS selects some
valueless features (e.g., hair, body, background, etc).

N

(c) COIL20

(a) BA

(b) Pixraw10P

Fig. 3. Convergence behavior of UNRFS on different
datasets, the x-axis represents the number of iteration, and
y-axis records the objective value in Eq. (3).

4.2. Convergence Demonstration

Fig. 3 shows the objective values in Eq. (3) with respect
to the number of iteration. All of them illustrate speedy con-
vergence of the proposed UNRFS.

5. CONCLUSION

In this paper, we propose a novel unsupervised feature
selection method via exploring the uncorrelated features on
Stiefel manifold. The proposed method takes advantages of
the classical ridge regression and evolves it for preventing the
case of unsupervised learning from the trivial solution and
equipping the model with the closed form solution. Besides,
since real labels are nonnegative values, a nonnegative con-
straint is imposed on indicator matrix so as to learn exact
labels. To validate the effectiveness and superiority of the
proposed UNRFS, extensive experiments are conducted and
demonstrate the promising performance of the UNRFS.
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