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ABSTRACT

We consider the problem of dictionary learning over training sets
whose sample size and parameter dimension are large-scale, which
is formulated as a non-convex stochastic program where the ob-
jective decomposes into a smooth non-convex part and a convex
sparsity-promoting penalty. We propose a Doubly Stochastic Suc-
cessive Convex approximation scheme (DSSC) as a new numerical
tool to address this task which operates by decomposing the dictio-
nary and sparse codes into blocks and operates on random subsets
of blocks at each step. The algorithm belongs to the family of suc-
cessive convex approximation methods since we replace the original
non-convex stochastic objective by a strongly convex sample surro-
gate function, and solve the resulting convex program, for each ran-
domly selected block in parallel. The method operates on subsets of
features (block coordinate methods) and training examples (stochas-
tic approximation) at each step. In contrast to many training schemes
for dictionary learning, DSSC attains almost sure convergence to a
stationary solution of the problem. We observe the practical benefits
of this approach for stable learning and computational speedup when
applied to streaming visual data gathered by a field robot.

Index Terms— Dictionary Learning, non-convex optimization,
stochastic methods, large-scale optimization, parallel optimization

1. INTRODUCTION

Transformations of data domains have become widely used in the
past decades, due to their ability to extract useful information from
input signals as a precursor to solving higher-level tasks such as sta-
tistical inference or learning-based control. For instance, if the sig-
nal dimension is very large, dimensionality reduction is of interest,
which may be approached with principal component analysis [2]. If
instead one would like to analyze the signal at multiple resolutions,
wavelets [3] may be more appropriate. These techniques, which also
include nonparametric approaches such as k-nearest neighbor, be-
long to a family of tools called unsupervised learning [4]. Recently,
methods based on signal representations learned from data, rather
than those fixed a priori, have gained traction for tasks such as image
in-painting or de-noising [5,6], as well as reinforcement learning [7].
Learned feature exctraction is broadly referred to as representation
learning, a special case of which is dictionary learning [8, 9], the fo-
cus of this work, specifically when the training data has both a large
sample size and parameter dimension.

The problem of developing a dictionary representation of a sig-
nal when both the training sample size and parameter dimension are
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huge-scale is a difficult non-convex stochastic optimization problem.
In the case where the sample size is small but the parameter dimen-
sion is large, one may use block coordinate descent (BCD) [10],
or alternating gradient methods [11], but these cannot operate with
data subsets at each step. Stochastic methods address the compu-
tational bottleneck in the sample size [12] by optimizing over sub-
batches of data, but are not guaranteed to converge for non-convex
problems [5, 13], and cannot address deal with large parameter di-
mension p. To address the non-convexity, one may apply convex
techniques to non-convex settings [14], implement simulated an-
nealing [15], or approximate the non-convex function by a convex
one [16, 17]. This later approach, termed successive convex approx-
imation (SCA), has the benefit of gracefully handling non-smooth
regularization, while possibly exploiting the convex sub-structure of
the non-convex term [17]. In this work, we develop a paralleliz-
able stochastic sub-sampling method based upon BCD and SCA to
address each of these challenges and obtain a globally convergent
numerical tool for dictionary learning from high-dimensional data.

2. ALGORITHM DEVELOPMENT

We address the task of dictionary learning using sparse represen-
tations from possibly infinitely many training examples when the
number of predictive parameters p is large. To do so, consider a
collection of signals {zn} ⊂ Rp for n = 1, . . . , N . We seek
to represent signals zn as combinations of a common set of k ba-
sis elements {dl}kl=1 which are unknown and must be learned from
data. We group these basis elements into a dictionary matrix D =
[d1, . . . ,dk] ∈ Rp×k and denote the coding of zn asαn ∈ Rk. The
coding αn are the coefficients of zn with respect to dictionary D.
The dictionary learning and coding problem calls for finding a cod-
ingα and dictionary D such that the signal z is close to its dictionary
representation Dα for all samples. This goal can be mathematically
formulated by introducing a loss function f(α,D; z) = ‖αD−z‖22
that depends on the proximity between Dα and the data point z. We
focus on the case where the sparsity dimension is greater than the
feature dimension, i.e., k ≥ p, but we want the codes to be sparse,
motivated by sparse representation methods. This goal may be in-
centivized via `1 regularization, yielding (with N →∞)

(D∗,α∗) := argmin
D∈D,α∈A

Ez[‖Dα− z‖22] + ζ‖α‖1 . (1)

Here D := {D ∈ Rp×k : ‖dl‖ ≤ 1, for all l} is the set of p × k
matrices with unit column norm that is introduced to eliminate scale
ambiguity in the bilinear term Dα in (1) and A ⊂ Rk is a compact
set in which sparse codes live. The bilinear term makes (1) non-
convex. Moreover, we do not assume the total number of examples
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zn is finite, yielding the statistical average loss in (1). In this pa-
per, we are interested in developing algorithms that use a subset of
samples of random signals z (training points) – stochastic approxi-
mation of the function F (D,α) := Ez[‖Dα− z‖22] – and a subset
of coordinates at each iteration. Moreover, we aim to design parallel
algorithms. For simplicity, we subsequently stack the dictionary and
sparse codes together in one matrix x = [D;α] ∈ Rp×k+k, such
that F (D,α) = F (x) and define the objective we seek to minimize
in (1) as V (x) := F (x) + ζ‖α‖1. Moreover, ζ is a regularization
parameter which makes α sparser as it increases. Further define the
stacked dimension p̃ := p× k + k.

Fix a collection of I parallel processors, with I ≤ B and as-
sume that I blocks are chosen uniformly at random from the total
B blocks. Consider i ∈ {1, . . . , B} as the index of the block as-
signed to one of the I processors, i.e., each processor updates one
block. Further define a training subset Zti corresponding to block i
at time t consisting of L instantaneous functions. Zti may be thought
of as random subsets of rows of the training data matrix. The aggre-
gate set of selected blocks at time t is denoted by It ⊂ {1, . . . , B},
with |It| = I . Note that our construction departs from [18]: rather
than use the block-wise stochastic gradient to develop an algorithm
based on only the linearization of the instantaneous objective, we
replace the instantaneous non-convex objective with a convex sur-
rogate. The benefit of this approach is incorporating the additional
non-smooth convex term ζ‖αi‖1 associated to block i in (1), yield-
ing a scheme which includes parallel proximal stochastic gradient as
a special case.

To design a scheme based on SCA, we consider use of instanta-
neous convex surrogate functions for the original functions at each
step. Let x−i denote the sub-vector obtained from x by deleting
xi. To derive the update for the block variable xi corresponding to
the i-th block, at iteration t, consider the objective with xi fixed,
i.e., E

[
f(xi,x

t
−i, z

t)
]

+ g(xi,x
t
−i). In our proposed SCA scheme,

we replace the non-convex function f(xi,x
t
−i, z

t), the stochastic
approximation of the aforementioned objective, by a proper local
convex function f̃i(xi;xt, zt), which we call the surrogate function
corresponding to block i. We define f̃i as a proper surrogate function
if it satisfies the following conditions [17].

Assumption 1. Consider x−i as the concatenation of all coordi-
nates of x other than those of block i. The surrogate f̃i(xi;x, z)
associated with the i-th block of x, i.e., xi, satisfies the following:

(a) f̃i(xi;x, z) is differentiable, convex w.r.t. xi for all x, z.

(b) ∇xi f̃i(xi;x, z) = ∇xif(x, z) for all x, z.

(c) ∇xi f̃i(xi;x, z) is Lipschitz continuous on X with constant Γ.

The conditions in Assumption 1 for the surrogate functions are
mild and there exists a large range of functions satisfying Assump-
tion 1. The most popular choice for the surrogate f̃i(xi;x,θ) is

f̃i(xi;x
t, z)=f(xt, z)+∇xif(xt, z)T (xi−xti)+

τi
2
‖xi−xti‖2, (2)

where τi > 0. It is easy to show that the surrogate function in (2)
satisfies the conditions in Assumption 1 and is strongly convex with
constant τi. This selection yields a variant of proximal stochastic
gradient methods, but many alternatives exist [17, 19].

2.1. Doubly Stochastic Successive Convex approximation method

Computation of the average function F (x) or its gradients ∇F (x)
is prohibitively costly, so we instead devise an algorithm that uses

stochastic approximation of the F (x) combined with successive
convex approximations. Moreover, to reduce the computation time
of the algorithm, we are interested in schemes that, at each itera-
tion, update only a subset of coordinates (blocks) of the decision
variable x. We introduce DSSC as a doubly stochastic method for
non-convex composite optimization that meets these requirements.

To do so, define the mini-batch sample surrogate function
as f̃i(xi;xt,Zti) = 1

L

∑
z∈Zt

i
f̃i(xi;x

t, z) for a given a set of

realizations Zti , where L is the size of the mini-batch. Further define
the mini-batch surrogate function gradient associated with the set
Zti: ∇f̃i(xi;xt,Zti) = 1

L

∑
z∈Zt

i
∇f̃i(xi;xt, z). The index i for

the training subset Zti shows that we use distinct sample points to
approximate functions for each block, so each processor operates on
distinct data in parallel.

The update for coordinate i of the DSSC is based on two steps.
First, we convexify the non-convex stochastic composite problem
(1) by introducing the strongly convex surrogate f̃i, and solve the
strongly convex sample problem, stated as

x̂t+1
i =argmin

xi∈Xi

{
ρtf̃i(xi;x

t,Zti) + (1− ρt)(dt−1
i )T (xi − xti)

+ gi(xi) +
τi
2
‖xi − xti‖2

}
, (3)

where τi is a positive constant, gi(xi) = ζ‖αi‖1, and ρt is a se-
quence of positive scalars (to be properly chosen) . First, note that
proximity term (τi/2)‖xi−xti‖2 makes the loss in (3) strongly con-
vex, so problem (3) has a unique solution, denoted by x̂t+1

i . The lin-
ear term dti in (3) is a time average of stochastic gradients associated
to block i, updated as [19]

dti = (1− ρt)dt−1
i + ρt∇xi f̃i(x

t
i;x

t,Zti). (4)

Observe that the update in (3) is similar to a block-wise proximal
stochastic gradient step [20], with two key differences: the recur-
sively averaged stochastic gradient dt−1

i takes place of the stochas-
tic gradient, and the surrogate function f̃i is used in lieu of the most
recent stochastic gradient. These augmentations of the proximal
step allow us to guarantee almost sure convergence in non-convex
settings, a property that often eludes first-order stochastic methods
(Section 3). The update in (4) shows that instead of approximating
the gradient of the function F with its stochastic approximation gra-
dient ∇xif(xt,Zti), which is equivalent to the surrogate function
gradient∇xi f̃i(x

t
i;x

t,Zti), we use a heavy-ball type average of the
observed stochastic gradients for the i-th block. It can be shown that
the sequence dti approaches the exact gradient∇xiF (xt) [19, 21].

The second step in DSSC is computing xt+1
i as a weighted av-

erage of the previous iterate xti and the solution x̂t+1
i of (3):

xt+1
i = (1− γt+1)xti + γt+1x̂t+1

i . (5)

γt in (5) is an attenuating step-size, to be properly chosen.
Equations (3) and (5) define the updates of a single block xt+1

i .
In DSSC we allow for simultaneous parallel updates of different
block coordinates of x, which are selected uniformly at random.
Note that this scheme is different from cyclic scheme in [10] that
allows for one block update per iteration or the greedy rule in [17],
but instead resembles the random coordinate method in [18]

The overall DSSC algorithm is summarized in Algorithm 1. The
core steps are Step 7, 9, and 10. In Step 7, the processor that oper-
ates on i-th block computes the auxiliary variable x̂t+1

i by solving
the minimization in (3), e.g., a block-wise proximal gradient step
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Algorithm 1 DSSC at processor operating on block i

1: Require: sequences γt and ρt.
2: for t = 0, 1, 2 . . . do
3: Read the variable xt

4: Receive the randomly chosen block i ∈ {1, . . . , B}
5: Choose training subset Zti for block xi
6: Compute surrogate function f̃i(xi;xt,Zti)
7: Compute variable x̂t+1

i as the solution of (3)
8: Compute surrogate gradient∇f̃i(xti;xt,Zti)
9: Update average gradient dti associated with block i [cf. (4)]

10: Compute the updated variable xt+1
i [cf. (5)]

11: end for

or Quasi-Newton step with a recursively averaged descent direction.
To do this, the processor needs to access to vector xt (Step 3), the
block that it should work on (Step 4), and a training subset Zti (Step
5) to compute its corresponding surrogate function f̃i(xi;xt−i,Z

t
i)

(Step 6). In Step 9, the processor updates the stochastic average
gradient dti associated to the block i using the surrogate gradient
∇f̃i(xi;xt−i,Zti) which is evaluated in Step 8. Finally, the variable
xt+1
i is computed in Step 10 using the weighted average of the pre-

vious iterate xti and the auxiliary variable x̂t+1
i .

3. CONVERGENCE ANALYSIS

In this section, we establish that the iterates defined by (3)-(5) con-
verge to a stationary point of (1). Before deriving the theoretical
results, we state some standard technical conditions which are re-
quired to hold for their proofs.

Assumption 2. The sets Xi are convex and compact.

Assumption 3. Let F t be the sigma-algebra generated by the col-
lection of past realizations of x and z up to iteration t, i.e. F t ⊃
{(xu,zu)}u≤t. The instantaneous gradients ∇xif(xt, zt) induce
stochastic errors whose conditional variance is finite:

E
[
‖∇xif(xt, zt)−∇xiF (xt)‖2 | F t

]
≤ σ2 <∞. (6)

Assumption 4. The statistical average objective F (x) has L-
Lipschitz continuous gradients, i.e., for all x,y ∈ X

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖. (7)

Assumption 2 is customary in non-convex optimization and
guarantees bounded iterates of the algorithm. The condition in
Assumption 2 implies that the set X is also convex and compact.
Hence, we can assume there exists a positive constant D such that
‖x − y‖ ≤ D for all x,y ∈ X . Note that the instantaneous gra-
dient ∇xif(xt, zt) is an unbiased estimator of ∇xiF (xt), given
the information available until t, i.e., E

[
∇xif(xt, zt) | F t

]
=

∇xiF (xt). Thus, Assumption 3 ensures the variance of the stochas-
tic gradient as an estimator of the true gradient is bounded. Assump-
tion 4 allows for the simplification of higher order terms that appear
in Taylor’s expansion.

Next we stipulate that diminishing step-sizes and momentum pa-
rameters are needed in order to establish convergence.
Parameter selection. The algorithm learning rate γt ∈ [0, 1] and
gradient momentum parameter ρt ∈ [0, 1] are chosen such that

(i) limt→∞ γ
t = 0,

∑∞
t=0 γ

t =∞,
∑∞
t=0(γt)2 <∞,

(ii) limt→∞ ρ
t = 0,

∑∞
t=0 ρ

t =∞,
∑∞
t=0(ρt)2 <∞,

(iii)
∑∞
t=0(γt)2/ρt <∞.

The first two parameter conditions make the noise of stochastic
approximation asymptotically null. The last condition is required to
show that the sequence of stochastic average gradients dti converges
to∇xiF (xt) almost surely by making use of gradient consistency.

Under these conditions, we establish almost sure convergence
when diminishing step-size and averaging parameters are used.

Theorem 1. Consider the sequence {xt} generated by (3)-(5) with
gradient averaging rate ρt ∈ [0, 1] and algorithm step-size γt ∈
[0, 1] satisfying the conditions (i) - (iii). Under Assumptions 1-4, the
DSSC algorithm converges to a stationary solution of (1).

Theorem 1 establishes that Algorithm 1 is guaranteed with prob-
ability 1 to attain the minimizer of the composite objective defined
by the regularized expected risk minimization problem with a non-
convex objective (1). While similar results hold for problems of this
type [17, 22], they do not apply to problems defined by training sets
where both feature dimension and sample size are huge-scale, while
the objective function is non-convex. Therefore, Theorem 1 is one of
the most generic convergence guarantees for non-convex large-scale
learning problems, and is achieved by a method whose complexity
is easily tunable by the number of processors and mini-batch size.
Next, we consider specific choices of ρt and γt to derive an upper-
bound of the convergence rate.

Theorem 2. Consider the sequence {xt} generated by (3)-(5). Fur-
ther assume that the parameters ρt and γt are chosen as

ρt = O
(

1

t
1
2
+ε

)
and γt = O

(
1

t
3
4
+ 3

2
ε

)
, (8)

where ε > 0 is an arbitrary small constant. Under Assumptions 1-4,
the following mean convergence rate holds

E
[
‖x̂t+1 − xt‖2

]
= o

(
1

t
1
4
− 3

2
ε

)
(9)

Theorem 2 establishes that Algorithm 1 converges at least at a
rate of o(t−1/4+(3/2)ε) to a stationary solution of (1). The conver-
gence results in this section establish that DSSC successfully solves
non-convex stochastic programs with large parameter dimensions.
In the next sections, we observe that these theoretical results trans-
late well into practice for dictionary learning.

4. ROBOTIC DICTIONARY LEARNING

We conducted experiments using a Clearpath Husky robot (see Fig-
ure 1) at Camp Lejeune, North Carolina, a cluttered urban setting
surrounded by forest. We collected images that were sequentially
observed by the platform – see Figures 1b and 1c for examples.
The images collected from the path traversed by the robot belong
to distinct classes of {grass, pavement, building, sky}. Each image
converted to a 320 × 240 pixel grayscale image, whose entries are
pixel intensities (elements of the unit interval), and partitioned into
610, 528 overlapping 24-by-24 sub-patches. Dictionaries are trained
using these sub-patches as observations. We consider the overdeter-
mined case where the number of atoms k = 120 is greater than the
patch dimension and the coefficient vector α we seek is sparse. This
is a canonical setting for visual feature extraction [6].

We run Algorithm 1 on the problem (1) for a variety of coordi-
nate selection strategies off-platform in order to assess which strat-
egy yields fastest convergence. In particular, we vary the proportion
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(a) Clearpath Husky Robot. (b) Sample taken by platform in urban area. (c) Sample taken by platform near forest.

Fig. 1: The platform on which we conduct experiments is a prototypical ground vehicle robot, a Clearpath Husky, which is equipped with a
high-fidelity camera. As the robot drives around the environment, we collect images, which are used to build the IRA data set.
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(a) Objective V (xt) vs. iteration t
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(b) Objective V (xt) vs. feature p̃t
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(c) Objective V (xt) vs. clock time (s)

Fig. 2: DSSC applied to training an unsupervised dictionary and sparse code when the number of processors I is fixed as I = 16, and the
number of blocks are B = 16, B = 32, B = 64, and B = 128, (i.e., r = 1, r = .5, r = .25, and r = .128, respectively). Convergence in
terms of the regularized reconstruction error (1) relative to the number of features processed improves with fewer blocks updated per iteration
(Figures 2a and 2b). This trend is inverted when we instead consider clock time (Figure 2c) because of the limitations of simulated, rather
than implemented, parallel architectures.

of updated coordinates r = I/B per iteration, which corresponds
to varying the number of parallel processors I operating on a single
block at each step. We fix B, the number of blocks and vary r as
r = 1/8, r = 1/4, r = 1/2, and r = 1, which corresponds to
updating all blocks at each step.

Results The quantitative results of this empirical experiment on
(down-sampled) high-fidelity robotic visual data for the dictionary
learning problem (1) are given in Figure 2, where we plot the objec-
tive (1) V (αt,Dt) with respect to different quantifiers of the amount
of information processed. In Figure 2a, we plot the convergence
with iteration t. Observe that learning accelerates with fewer blocks
(smaller r) relative to iteration count.

This trend is corroborated in Figure 2b: we plot the sparsity-
regularized reconstruction error versus the number of features pro-
cessed. The convergence rate increases with decreasing r here, both
when the rate is measured in terms of samples and features pro-
cessed. This trend is in contrast to non-proximal block stochastic
gradient methods (RAPSA) [22], where this relationship may not
hold. This distinguishing trend of DSSC relative to RAPSA is due
to the presence of the proximal term and the non-smoothness of the
problem (1), which makes successive convex approximation inherit
more of the benefits of Gauss-Seidel style updates in block coordi-
nate methods as compared with the smooth convex setting of [22].

Figure 2c displays the convergence path of DSSC on the prob-
lem (1) in terms of clock time for our numerical simulation. We

observe that the favorable trends seen in Figures 2a and 2b are in-
verted in 2c, suggesting that to recover the improved convergence
of DSSC, parallel computing architecture implementations are re-
quired, and simulations of parallel computing cannot match physical
reality. The takeaway is that learning rates on autonomous systems
may be optimized by equipping them with GPUs tailored towards
parallel data processing.

5. CONCLUSION

In this work, we developed a new numerical optimization tool for
learning dictionary-based signal representations from training data
when the number of samplesN is huge-scale, as is the parameter di-
mension p. This method alleviates the complexity bottleneck in both
N and p by operating on subsets of both samples (via stochastic
approximation) and parameters (using block coordinate methods).
Moreover, dictionary learning defines a non-convex problem, which
we circumvented through use of successive convex approximation.
We then proved that the resulting algorithm converges to a stationary
point of the problem and established its learning rate. Empirical vali-
dation on an online dictionary learning from visual data collected by
a ground robot demonstrated that reliably and stable learning occurs
in practice, despite the non-convexity.
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