
DICTIONARY LEARNING FOR GAUSSIAN KERNEL ADAPTIVE FILTERING WITH
VARIABLE KERNEL CENTER AND WIDTH

Tomoya Wada, Kosuke Fukumori, and Toshihisa Tanaka

Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology
2–14–16 Nakacho, Koganei-shi, Tokyo, 184–8588, Japan

Email: {wada15, fukumori17}@sip.tuat.ac.jp, tanakat@cc.tuat.ac.jp

ABSTRACT

This paper establishes an adaptive update method for the Gaussian
kernel parameters in the application to the kernel adaptive filtering
(KAF). In this method, the kernel parameters are all adaptive and
data-driven, although they should be given or estimated by cross-
validation. In terms of the Gaussian KAF, every input sample or
signal has its own width and center, which are updated at each iter-
ation based on the proposed least-square-type rules to minimize the
estimation error. In particular, the proposed update rule keeps the
width in the manifold of the positive numbers. Together with the ℓ1-
regularized least squares, the overall KAF algorithm can avoid the
overfitting and the increase of dimensionality. Experimental results
support the validity of the method.

Index Terms— Nonlinear adaptive filtering, kernel methods, re-
producing kernel Hilbert space, dictionary learning.

1. INTRODUCTION

An adaptive filter or adaptive filtering is a system or technique that
updates its parameters at every time step to approximate a static or
dynamic unknown system [1]. Although traditional adaptive filters
assume linear models, many situations require nonlinear adaptive
filters, since systems in the real environments can be modeled non-
linear. Several types of nonlinear adaptive filters have been reported.
Among them, the kernel adaptive filtering (KAF) as an efficient non-
linear approximation approach with online manner developed in a
reproducing kernel Hilbert space (RKHS) has attracted much more
interests [2, 3].

The system model of the KAF is represented by the superposi-
tion of the kernels corresponding to the observed signals (or sam-
ples), where the adaptive algorithm is intended to estimate coupling
coefficients of kernels. Typical KAF algorithms include the kernel
least mean square (KLMS) [4–7], the kernel normalized least mean
square (KNLMS), the kernel affine projection algorithms (KAPA) [8,
9], and the kernel recursive least squares (KRLS) [10], etc. The main
bottleneck of the KAF algorithms is their linearly growing struc-
ture with each new input signal, which poses both computational
issues and overfitting. A straightforward but practical approach to
this problem is to limit the number of observed signals. This set of
observed signals is called a dictionary. Typical criteria for the dic-
tionary learning include the novelty criterion [11], the approximate
linear dependency (ALD) criterion [10], the surprise criterion [12],
and the coherence-based criterion [13]. They accept only the novel
and informative input signals as the dictionary members. Another

This work is supported by JSPS KAKENHI Grant Number 17H01760.

approach is the ℓ1-regularization [14, 15]. In this approach, the fil-
ter coefficients are regularized by the ℓ1-norm, which makes some of
coefficients zero, and then the corresponding entries in the dictionary
are eliminated. Even when the system model dynamically changes,
the number of dictionary members can be suppressed.

Another implementation of the KAF is to update the parame-
ters of kernels to decrease the estimation error of the output. In
standard KAF, kernel centers are given as observed signals. Some
related works proposed to adaptively move all the kernel centers
in the dictionary to minimize the square error [16–18]. The ker-
nel width is another important parameter to govern the performance
kernel machines [19–22]. An attempt to adaptively estimate the ker-
nel width has been reported recently [22]. In a recent work [23],
Wada and Tanaka have also proposed a novel update method for the
kernel width, which can efficiently find a proper width in the man-
ifold of the positive numbers. Although the above methods are ef-
ficient strategies for increasing performance of the KAF, all kernel
functions in each system have a common width parameter, since a
RKHS only has one single kernel function. The use of a RKHS is
mathematically simple but the model is not flexible.

This paper proposes an adaptive update method for both the
Gaussian centers and widths of all kernel functions that contribute
to the KAF model. Thus, the dictionary in the proposed KAF con-
sists of a couple of the kernel center and width. For each input signal,
all entries in the dictionary are updated to minimize the estimation
error. Least-square-type rules are adopted for this strategy. In par-
ticular, the developed update rule with a logarithm map can search
kernel widths on the manifold of positive real numbers. This dou-
ble adaptation strategy for the kernel center and the kernel width is
incorporated with the ℓ1-regularized least squares for updating the
filter coefficients, which lead to avoiding the overfitting and the in-
crease of dimensionality.

2. KERNEL NONLINEAR FILTERING MODEL

Let u(n) ∈ U ⊂ RL be a input signal at time instance n and d(n) ∈ R be
the corresponding desired signal. The goal is to learn a continuous
input-output mapping, f : U → R, based on the incoming sequence,
{u(i), d(i)}Ni=1, in the reproducing kernel Hilbert space (RKHS), H ,
induced by the positive-definite kernel, κ(·, ·) : U ×U → R. In the
KAF, f (·) is modeled a linear form in RKHS: f (·) = ⟨Ω, ϕ(·)⟩, where
ϕ(u) = κ(·,u) is a nonlinear function which transfers the input signal
from the initial space to RKHS and Ω is the weight vector in RKHS.
According to the representer theorem [13], Ω can be described as

Ω =
∑r

j=1
h jκ(·, c j). (1)

2766978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

h2

⇣1

⇣r

⇣2

h1

hr

u(n) y(n)

d(n)�

..
.

..
.

c1

c2

cr

I can't wait to play 
MARIO ODYSSEY!

X

X +

Fig. 1: Conceptual diagram of the proposed V-CAW.

where {h j}rj=1 ∈ R are the filter coefficients to be estimated and
D = {c j}rj=1 is a set of input signals accepted by a criterion. This
set is called the dictionary. The number of dictionary is restricted
to r (r(n) ≪ n) in the sparse representation [10–15]; therefore, the
dictionary, D(n), is updated at every time instance. Then, the filter
output is represented as

y(n) = ⟨Ω, κ(·,u(n))⟩ =
∑r

j=1
h jκ(u(n), c j). (2)

A widely-used kernel function is the Gaussian kernel, which is
a celebrated example of positive definite kernels, defined as

κ(·, c; ζ) = exp
(
−ζ∥ · −c∥2

)
, (3)

where c and ζ are the parameters called the center and the width of
the Gaussian kernel, respectively. In the traditional KAF algorithms,
the centers are not moved once they are added to the dictionary and
the width is fixed common value among the centers. In a word, they
have been static parameters. Unlike this, we propose to regard them
as dynamic parameters. In the rest of the paper, the proposed method
for data-driven adaptation of the parameters is described.

3. UPDATE METHOD FOR VARIABLE KERNEL
CENTERS AND WIDTHS (V-CAW)

The proposed model is the superposition of the Gaussian kernels
with time-variable width ζ(n)

j and center c(n)
j given as:

y(n) =
∑r(n)

j=1
h j

(n)κ(u(n), c(n)
j ; ζ(n)

j)

=
∑r(n)

j=1
h j

(n) exp(−ζ(n)
j ∥u(n) − c(n)

j ∥2)

=h(n)⊤κ(n), (4)

where

h(n) := [h(n)
1 h(n)

2 , . . . , h(n)
r]⊤ ∈ Rr, (5)

κ(n) := [κ(u(n), c(n)
1 ; ζ(n)

1), κ(u(n), c(n)
2 ; ζ(n)

2), . . . , κ(u(n), c(n)
r ; ζ(n)

r)]⊤ ∈ Rr.
(6)

Fig. 1 shows a conceptual diagram of the proposed V-CAW. It should
be noted that the dictionary at time n is a time-variable of a couple
the center and the width, which is described as

D(n) = {(c(n)
1 , ζ(n)

1), (c(n)
2 , ζ(n)

2), . . . , (c(n)
r , ζ(n)

r)}. (7)

To adaptively find the proper parameters, we adopt the instantaneous
square error as the loss function:

J(n)(D(n)) : = e(n)2
= |d(n) − y(n)|2. (8)

Remark. We describe the sum space of RKHS [24] in order to dis-
cuss a space in which multikernel adaptive filters [25, 26], including
the proposed filter, exist. We consider the case of sum space of two
RKHS, for the sake of ease without loss of generality.

Let H1 and H2 be Hilbert spaces. Moreover, H1 ⊕ H2 denotes
the direct sum of RKHS of H1 and H2, represented as H. In this
case, the norm of direct sum of f1 ∈ H1 and f2 ∈ H2, f = (f1, f2) ∈
H, is represented as follows [24]:

∥ f ∥2H := ∥ f1∥2H1
+ ∥ f2∥2H2

. (9)

In particular, if H1 ∩ H2 = {0}, the sum space, H := { f = f1 +

f2 | f1 ∈ H1, f2 ∈ H2}, is isomorphic to the direct space, H [24].
Consequently, the norm inH is represented as

∥ f ∥2H := ∥ f1∥2H1
+ ∥ f2∥2H2

. (10)

Also, let the kernel of H1 and the kernel of H2 denote κ1 and κ2,
respectively. The value of any f ∈ H can be evaluated by the kernel,
κ = κ1 + κ2 [24]:

f (u) = ⟨ f , κ(·,u)⟩H = ⟨ f1, κ1(·,u)⟩H1 + ⟨ f2, κ2(·,u)⟩H2 . (11)

Assume that M different kernels, {κm(·, ·)}Mm=1, are given. Also, let
Hm andH denote RKHS determined by the mth kernel and the cor-
responding sum space, respectively. In this case, from (11), the out-
put is represented with the filter, Ω ∈ H , and nonlinear mapping of
input, ϕ(u(n)) = κ(·,u(n)) ∈ H , as

y(n) = ⟨Ω, κ(·,u(n))⟩H =
∑M

m=1
⟨Ωm, κm(·,u(n))⟩Hm , (12)

where Ωm is constructed in each Hm and Ω is the sum of Ωm. It
should be noted that there is no need for the index set of the dictio-
nary in each RKHS to equalize [26]. Therefore, the output of our
filter in (4) can be rewritten as a multikernel adaptive filter with rn

different kernels:

y(n) = ⟨Ω, κ(·,u(n))⟩H =
∑r

j=1
⟨Ω j, κ j(·,u(n))⟩H j , (13)

where Ω j = h jκ j(·, c j).

3.1. Updating the Kernel Centers

The update rule for each kernel center can be derived by using least
mean square (LMS) algorithm [1]:

c(n+1)
j =c(n)

j − ηc
∂J(n)(c j)
∂c j

∣∣∣∣∣∣
c j=c

(n)
j

=c(n)
j + 4ηcζ je(n)h j exp

(
−ζ j∥u(n) − c(n)

j ∥2
)

(u(n) − c(n)
j), (14)

where ηc is a step size. Although the update methods for the cen-
ters proposed in [16–18] are efficient strategies for increasing per-
formance of the KAF, the generalization capability depends on the
selection of the kernel width. Therefore, in addition to that, we pro-
pose to update the kernel widths in Section 3.2.

2767

3.2. Updating the Kernel Widths

The width is a positive parameter, which is an element of a man-
ifold of the positive real numbers, denoted by R+. On the other
hand, a standard LMS is an algorithm for parameters in R. This
paper proposes to employ a one-to-one map from R+ to R given by
ξ(ζ) = log(ζ/ζ(n)), where ζ(n) is the value at the nth iteration. Then, a
standard LMS is applied to ξ in R. Following this scenario, the LMS
update for ξ j ∈ R can be derived as

ξ(n+1)
j = ξ j(ζ

(n)
j)︸ ︷︷ ︸
=0

−ηw
∂J(n)(ζ j)
∂ξ j

∣∣∣∣∣∣
ζ j=ζ

(n)
j

= −ηw
∂J(n)(ζ j)
∂ζ j

∂ζ j(ξ j)
∂ξ j

∣∣∣∣∣∣
ζ j=ζ

(n)
j

= −ηwζ
(n)
j

∂J(n)(ζ j)
∂ζ j

∣∣∣∣∣∣
ζ j=ζ

(n)
j

, (15)

where ηw is a step size. Thanks to the normalization by ζ(n)
j , we can

update them stably on the manifold of positive real numbers, even
when ζ j is very small. Then, the (n + 1)th width is obtained by ap-
plying the inverse map, ζ(ξ) = ζ(n) exp(ξ). Therefore, the following
update rule is derived:

ζ(n+1)
j =ζ(n)

j exp(ξ(n+1)
j) = ζ(n) exp

−ηwζ
(n)
j

∂J(n)(ζ j)
∂ζ j

∣∣∣∣∣∣
ζ j=ζ

(n)
j


=ζ(n)

j exp
(
−2ηwζ

(n)
j e(n)h(n)

j exp
(
−ζ(n)

j ∥u(n) − c(n)
j ∥2
)
∥u(n) − c(n)

j ∥2
)
.

(16)

4. ℓ1-REGULARIZED KNLMS INCORPORATED WITH
V-CAW

To avoid the overfitting and the increase of dimensionality, the pro-
posed update method for the parameters in Section 3 is incorporated
with the ℓ1-regularized least squares for updating the filter coeffi-
cients. In this scenario, the weighted ℓ1-norm is added to the square
error:

Θ(n) := |d(n) − h(n)⊤κ(n)|2 + λ
∑r(n)

j=1
w(n)

j |h
(n)
j |︸ ︷︷ ︸

:=ψ(n)

, (17)

where ψ(n) and λ are a weighted ℓ1-norm and a regularization param-
eter, respectively. Moreover, w(n)

j = 1/(|h(n)
j | + β) is a dynamically

adjusted weight [15]. To minimizing the cost function, we can apply
the forward-backward splitting [27], since Θ(n) is a convex function.
The update rule is then given as follows [15]:

h(n+1) = proxµλψ(n)

h(n)
+

µ
(
d(n) − h(n)

⊤
κ(n)
)
κ(n)

ρ + ∥κ(n)∥2

 , (18)

where µ is a step size parameter and ρ is a stabilization parameter.
Also, κ(n) := [κ(n)⊤, κ(u(n),u(n))]⊤ and h(n) := [h(n)⊤, 0]⊤. Besides,
proxµλψ(n) (·) denotes the proximal operator [27] of λψ(n). For a vector
α := [α1, α2, . . . , αr]⊤ ∈ Rr, proxµλψ(n) (α) is given as(

proxµλψ(n) (α)
)

j
= sgn{α j}max{|α j| − µλw(n)

j , 0}, (19)

where (·) j denotes the jth element of a vector. This update rule can
promote the sparsity of h j, and then some of the coefficients become
almost zero. If h j ≈ 0, remove (c j, ζ j) from the dictionary. The over-
all algorithm (KNLMS-ℓ1 + V-CAW) is summarized in Algorithm
1, where Steps 9 and 10 are the main steps of V-CAW.

Algorithm 1 KNLMS-ℓ1 + V-CAW

1: Set the initial kernel width, ζinit..
2: Add (u(0), ζinit.) into the dictionary as the 1st member, D(0) =

{(c0, ζ0)}.
3: while {u(n), d(n)} (n > 1) available do
4: Add (u(n), ζinit.) into the dictionary,D(n).
5: Update the filter coefficients using (18).
6: if h j ≈ 0 then
7: Remove (c j, ζ j) from the dictionary,D(n).
8: end if
9: Update the kernel centers using (14)

10: Update the kernel widths using (15).
11: end while

5. NUMERICAL EXAMPLES

To illustrate the performance of the proposed algorithm, numerical
examples including dynamic system identification and real world In-
ternet traffic prediction are presented.

5.1. Dynamic System Identification

We consider the nonstationary nonlinear system [18] as follows:

d(n) :=
{

10{e−(u(n)−3)2
+ e−(u(n)−7)2 } (0 ≤ n ≤ 20, 000)

10{e−a(u(n)−13)2
+ e−b(u(n)−17)2 } (20, 000 < n ≤ 40, 000)

(20)
which is corrupted by noise sampled from a zero-mean Gaussian
distribution with standard deviation equal to 0.3. In the above sys-
tem, a and b are constants. Input signals u(n) are sampled from uni-
form distribution on the interval [0, 10] when 0 ≤ n ≤ 20, 000 and
the interval [10, 20] when 20, 000 < n ≤ 40, 000. For compari-
son purpose, we test the KNLMS with coherence-based criterion
(KNLMS-CC) [13], the KNLMS with ℓ1-regularization (KNLMS-
ℓ1) [14,15], and the proposed method in Algorithm 1 (V-CAW). The
parameters of them are set as: KNLMS-CC (µ = 0.09, ρ = 0.03,
ζ = 1.0, δ = 0.5), KNLMS-ℓ1 (µ = 0.09, ρ = 0.03, ζ = 1.0,
λ = 5.0×10−3, β = 0.1), and V-CAW (µ = 0.09, ρ = 0.03, ζinit. = 1.0,
ηc = 1.0 × 10−3, ηw = 1.0 × 10−3, λ = 5.0 × 10−3, β = 0.1), where
δ in KNLMS-CC is a threshold to determine the level of sparsity of
the model [13]. We adopt mean square error (MSE) as the evalua-
tion criteria. The MSE is calculated by taking an arithmetic average
over 100 independent realizations. We test three different sets of val-
ues of (a, b): (a, b) = {(0.5, 0.5), (2, 2), (0.5, 2)}. Figs. 2 (a), (b), and
(c) show that the V-CAW achieves lower MSE than the others when
0 ≤ n ≤ 20, 000. This implies the efficacy of updating the centers. In
addition, it is observed that the V-CAW flexibly responds to the sys-
tem switches at n = 20, 000. It should be noted that the V-CAW can
adapt the system featured by the sum of different Gaussian kernels
such as the case of that (a, b) = (0.5, 2) since the proposed method
has different widths for each kernel. That is to say, the proposed V-
CAW can flexibly adapt for the unknown systems. Moreover, Figs. 2
(d), (e), and (f) exhibit that the V-CAW has the smallest dictionary
size after the switch of the nonlinear system. The above results sup-
port the efficacy of adaptation for the centers and the widths.

5.2. Internet Traffic Prediction

The second example is a real-world Internet traffic dataset [21]. The
task is to predict the current value of the sample using the previous
ten consecutive samples. For the convenience of computation, all

2768

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

10−3

10−2

10−1

100

101

102
M

S
E

KNLMS-CC
KNLMS-`1

V-CAW

(a) MSE when (a, b) = (0.5, 0.5)

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

10−3

10−2

10−1

100

101

102

M
S

E

KNLMS-CC
KNLMS-`1

V-CAW

(b) MSE when (a, b) = (2, 2)

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

10−3

10−2

10−1

100

101

102

M
S

E

KNLMS-CC
KNLMS-`1

V-CAW

(c) MSE when (a, b) = (0.5, 2)

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

0

10

20

30

40

50

60

M
ea

n
D

ic
tio

na
ry

S
iz

e

KNLMS-CC
KNLMS-`1

V-CAW

(d) Mean dictionary size when (a, b) = (0.5, 0.5)

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

0

5

10

15

20

25

30

35

40

M
ea

n
D

ic
tio

na
ry

S
iz

e

KNLMS-CC
KNLMS-`1

V-CAW

(e) Mean dictionary size when (a, b) = (2, 2)

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Iterations

0

5

10

15

20

25

30

35

40

45

M
ea

n
D

ic
tio

na
ry

S
iz

e

KNLMS-CC
KNLMS-`1

V-CAW

(f) Mean dictionary size when (a, b) = (0.5, 2)

Fig. 2: Performance comparison: The convergence curves of MSE ((a), (b), and (c)) and mean dictionary size ((e), (f), and (g)) for three
different parameters (a, b). These results are calculated by taking an arithmetic average over 100 independent realizations.

0 200 400 600 800 1000

Number of Samples

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
m

p
lit

u
d
e

TRUE

KNLMS-CC

KNLMS-ℓ1

V-CAW

(a) The tracking of each filter

0 2000 4000 6000 8000 10000 12000

Number of Iterations

10
−3

10
−2

10
−1

10
0

10
1

te
s
ti
n
g

M
S

E

KNLMS-CC

KNLMS-ℓ1

V-CAW

(b) Convergence curves

0 2000 4000 6000 8000 10000 12000

Number of Iterations

0

20

40

60

80

100

120

140

160

D
ic

ti
o
n
a
ry

S
iz

e

KNLMS-CC (Avg. 46.9 ± 7.59)

KNLMS-ℓ1 (Avg. 41.6 ± 27.5)

V-CAW (Avg. 24.9 ± 20.1)

(c) Dictionary size evolutions

Fig. 3: Internet traffic time series prediction. (a) The tracking of each filter in terms of the test data, (b) the convergence curves of the trained
filters, and (c) Dictionary size evolutions in terms of training.

samples are normalized into the interval [0, 1]. We again compare
the performance of the KNLMS-CC (µ = 0.5, ρ = 0.03, ζ = 1.0,
δ = 0.97), the KNLMS-ℓ1 (µ = 0.5, ρ = 0.03, ζ = 1.0, λ = 5.0 ×
10−5, β = 0.1), and the V-CAW (µ = 0.5, ρ = 0.03, ζinit. = 1.0,
ηc = 0.5, ηw = 0.07, λ = 5.0 × 10−5, β = 0.1). In this example,
12,000 samples are used as the training data and the other 1,000
samples as the test data. Fig. 3 (a) shows that the V-CAW has the
highest tracking ability. Besides, the convergence cures in terms of
the testing MSE are demonstrated in Fig. 3 (b). At each iteration, the
testing MSE is computed on the test set using the filter resulting from
the training set. Fig. 3 (b) demonstrates that the V-CAW achieves
the best performance. Finally, Fig. 3 (c) shows the dictionary size
evolutions in terms of training. It is observed in Fig. 3 (c) that the
V-CAW suppresses the increase of the dictionary size.

6. CONCLUSION

This paper proposed an update method for variable kernel centers
and widths (V-CAW) in the kernel adaptive filtering. In the V-CAW,
the dictionary consists of a couple of the kernel center and width.
For each input signal, all entries in the dictionary are updated by the
proposed least-square type rules. In particular, the developed update
rule with a logarithm map can search kernel widths on the manifold
of positive real numbers. The proposed V-CAW is incorporated with
the ℓ1-regularized least squares to avoid the overfitting and the in-
crease of dimensionality. Numerical examples showed that the pro-
posed method exhibits higher performance in terms of the MSE and
the dictionary size in dynamic systems.

2769

7. REFERENCES

[1] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ:
Prentice-Hall, 2002.

[2] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learn-
ing with kernels,” IEEE Trans. Signal Process., vol. 52, no. 8,
pp. 2165–2176, 2004.

[3] W. Liu, J. Principe, and S. Haykin, Kernel Adaptive Filtering.
Hoboken, NJ: Wiley, 2010.

[4] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-
mean-square algorithm,” IEEE Trans. Signal Process., vol. 56,
no. 2, pp. 543–554, 2008.

[5] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s
calculus to reproducing kernel Hilbert spaces and the complex
kernel LMS,” IEEE Trans. Signal Process., vol. 59, no. 3, pp.
964–978, 2011.

[6] B. Chen, S. Zhao, P. Zhu, and J. C. Principe, “Quantized ker-
nel least mean square algorithm,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 23, no. 1, pp. 22–32, 2012.

[7] F. Tobar, S.-Y. Kung, and D. Mandic, “Multikernel least mean
square algorithm,” IEEE Trans. Neural Netw., vol. 25, no. 2,
pp. 265–277, 2014.

[8] W. Liu and J. C. Prı́ncipe, “Kernel affine projection algo-
rithms,” EURASIP J. Adv. Signal Process., vol. 2008, no. 1,
pp. 1–13, 2008.

[9] J. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. Jensen,
“Nonlinear acoustic echo cancellation based on a parallel-
cascade kernel affine projection algorithm,” in Proc. of 2012
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP 2012), 2012, pp. 33–36.

[10] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8,
pp. 2275–2285, 2004.

[11] J. Platt, “A resource-allocating network for function interpola-
tion,” Neural computation, vol. 3, no. 2, pp. 213–225, 1991.

[12] W. Liu, I. Park, Y. Wang, and J. C. Prı́ncipe, “Extended ker-
nel recursive least squares algorithm,” IEEE Trans. Signal Pro-
cess., vol. 57, no. 10, pp. 3801–3814, 2009.

[13] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online pre-
diction of time series data with kernels,” IEEE Trans. Signal
Process., vol. 57, no. 3, pp. 1058–1067, 2009.

[14] W. Gao, J. Chen, C. Richard, J. Huang, and R. Flamary, “Ker-
nel LMS algorithm with forward-backward splitting for dictio-
nary learning,” in Proc. of 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2013),
2013, pp. 5735–5739.

[15] W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary
learning for kernel LMS,” IEEE Trans. Signal Process., vol. 62,
no. 11, pp. 2765–2777, 2014.

[16] C. Saide, R. Lengelle, P. Honeine, C. Richard, and R. Achkar,
“Dictionary adaptation for online prediction of time series data
with kernels,” in Proc. of 2012 IEEE Statistical Signal Process-
ing Workshop (SSP), 2012, pp. 604–607.

[17] C. Saide, R. Lengelle, P. Honeine, and R. Achkar, “Online ker-
nel adaptive algorithms with dictionary adaptation for MIMO
models,” IEEE Signal Process. Lett., vol. 20, no. 5, pp. 535–
538, 2013.

[18] T. Ishida and T. Tanaka, “Efficient construction of dictionar-
ies for kernel adaptive filtering in a dynamic environment,”
in Proc. of 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2015), 2015, pp. 3536–
3540.

[19] N. Benoudjit and M. Verleysen, “On the kernel widths in
radial-basis function networks,” Neural Process. Lett., vol. 18,
no. 2, pp. 139–154, 2003.

[20] A. K. Ghosh, “Kernel discriminant analysis using case-specific
smoothing parameters,” IEEE Trans. Syst., Man, Cybern. B,
vol. 38, no. 5, pp. 1413–1418, 2008.

[21] B. Chen, J. Liang, N. Zheng, and J. C. Principe, “Kernel least
mean square with adaptive kernel size,” Neurocomputing, vol.
191, pp. 95–106, 2016.

[22] H. Fan, Q. Song, and S. B. Shrestha, “Kernel online learn-
ing with adaptive kernel width,” Neurocomputing, vol. 175, pp.
233–242, 2016.

[23] T. Wada and T. Tanaka, “Doubly adaptive kernel filtering,” in
Proc. of 2017 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA 2017),
no. TA-P3.6, 2017.

[24] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer.
Math. Soc., vol. 68, no. 9, pp. 337–404, 1950.

[25] M. Yukawa, “Multikernel adaptive filtering,” IEEE Trans. Sig-
nal Process., vol. 60, no. 9, pp. 4672–4682, 2012.

[26] T. Ishida and T. Tanaka, “Multikernel adaptive filters with mul-
tiple dictionaries and regularization,” in Proc. of 2013 Asia-
Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA 2013), 2013, pp. 1–6.

[27] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A
sparse adaptive filtering using time-varying soft-thresholding
techniques,” in Proc. of 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2010),
2010, pp. 3734–3737.

2770

