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ABSTRACT

Researchers have recently examined a modified approach to
sparse coding that encourages dictionaries to learn anomalous
features. This is done by incorporating the matrix 1-norm,
or `1,∞ mixed matrix norm, into the dictionary update por-
tion of a sparse coding algorithm. However, solving a ma-
trix norm minimization problem in each iteration of the algo-
rithm causes it to run more slowly. The purpose of this paper
is to introduce block coordinate descent, a subgradient-like
approach to minimizing the matrix norm, to the dictionary
update. This approach removes the need to solve a convex
optimization program in each iteration and dramatically re-
duces the time required to learn a dictionary. Importantly, the
dictionary learned in this manner can still model anomalous
features present in a dataset.

Index Terms— Sparse coding, dictionary learning, ma-
trix norms, anomaly detection

1. INTRODUCTION

Sparse coding is an increasingly important field of signal pro-
cessing having many applications in audio and visual pattern
recognition [1, 2, 3, 4]. Recently, sparse coding has also been
explored in the context of anomaly detection [5, 6, 7, 8]. One
goal of sparse coding is to uncover the underlying structure
present in a dataset. Dictionary learning does this by mini-
mizing the average reconstruction error given a set of obser-
vations, which requires the atoms that make up the training
data to be present fairly uniformly.

This introduces a major difficulty in using sparse cod-
ing for anomaly detection. Anomalous data points may lose
their abnormal behavior in reconstruction, making them hard
to classify. Another problem associated with anomaly detec-
tion is the difficulty in producing training data. For example,
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anomalies can take the form of network intrusion [9], disease
[10], or other unfortunate events [11] that are not easily or
ethically replicated.

Researchers have explored ways to modify sparse coding
to encourage dictionaries to learn anomalous features. In par-
ticular, the work presented in [12] demonstrates that incorpo-
rating a matrix norm into the dictionary update portion of the
algorithm allowed the dictionary to recover a known anoma-
lous feature in a dataset.

The purpose of this paper is to address a significant limi-
tation to the algorithm presented in [12] by introducing block
coordinate descent [13, 14] to minimize the matrix norm in
the dictionary update. We show that using this approach re-
duces the time required to learn a dictionary by an order of
magnitude while preserving the algorithm’s ability to model
anomalous features.

2. BACKGROUND

2.1. Dictionary Learning

The goal of sparse coding dictionary learning is to find the
dictionary and sparse coefficient vectors that best explain a
set of input vectors. Under assumptions of independent co-
efficient vectors and Gaussian zero-mean noise, this reduces
to jointly solving for a dictionary (D) and sparse coeffi-
cient vectors ({αn}n=1,...,N) given many training samples,
({xn}n=1,...,N) [15, 16]:

min
D∈C,{αn}∈RK

1

N

N∑
n=1

1

2
‖xn −Dαn‖22 + λ ‖αn‖1 . (1)

In this formulation, λ is a fidelity-sparsity tradeoff parameter
and C is the set of matrices in RM×K whose columns have `2-
norm less than one. Without that constraint, the columns ofD
could grow arbitrarily large, allowing each αn to be arbitrar-
ily small and effectively removing the `1 term in the objective
function. We solve Eq. (1) using the alternate minimization
algorithm, outlined in Algorithm 1 [17, 18].
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Algorithm 1 Alternate Minimization
Inputs: Signals {xn ∈ RM}n=1,...,N, initial dictionary D0 ∈
C, regularization term λ, number of iterations I.

1: Initialize D ← D0

2: for i = 1, ..., I do
3: for n = 1, ...,N (in parallel) do
4: Calculate coefficient vectors:

αn = argmin
α

1
2 ‖xn −Dα‖22 + λ ‖α‖1

5: end for
6: Update dictionary:

D = argmin
D∈C

1
N

N∑
n=1

1
2 ‖xn −Dαn‖22

7: end for
8: return D

2.2. Matrix Norm

The averaged `2 dictionary update (Step 6 in Algorithm 1)
is the most natural update under the assumptions described
earlier. However, it has been shown previously that using a
matrix norm can force the dictionary to consider minimizing
a maximum error rather than the average error [12]. The mod-
ified dictionary update (step 6 in Algorithm 1) using the `1,∞
norm becomes

D = argmin
D∈C

‖X − DA‖1,∞ . (2)

The matrix 1-norm presented in [12] is equivalent to the
`1,∞ mixed matrix norm [19, 20]. To avoid confusing the sub-
ordinate matrix 1-norm with the vector `1 norm, we choose to
use the mixed norm notation in this paper. It is defined as

‖A‖1,∞ ≡ max
1≤n≤N

M∑
m=1

|Am,n| =
∣∣∣∣ ‖a1‖1 · · · ‖aN‖1

∣∣∣∣
∞,

(3)
where the vector an is the nth column of A. In words, ‖A‖1,∞
returns the maximum absolute column sum of A. Therefore,
minimizing ‖X − DA‖1,∞ will minimize the maximum ab-
solute deviation of any given training vector, encouraging the
features to explain every data point, regardless of how infre-
quently it appears.

2.3. Block Coordinate Descent

One implementation of the alternating minimization algo-
rithm updates the dictionary by running a few iterations of
gradient descent [21]. This reduces the complexity of each
main iteration of the algorithm. For the standard average `2
dictionary update, the gradient is well-defined. The `1,∞ up-
date, however, includes a max operator and an absolute value.
While both of these are convex, neither has a smooth gradient.
In [12], the authors used CVX [22] to solve for the dictionary
update. This caused the dictionary to be learned ten times
more slowly (in wall time) than a standard dictionary.

In this paper we use block coordinate descent to perform
the matrix norm update [13, 14]. In block coordinate descent,
the columns with the largest `1 norms are identified and the
dictionary is updated to reduce the `1 norms of those columns.
The dictionary update then becomes

Dnew = Dcur + δsign (XI −DcurAI)A>I , (4)

where I is the set of indices corresponding to the columns
with the largest `1 norms, and the matrices XI and AI are
formed by extracting only those columns from X and A.
Equivalently, XI can be thought of as being formed using
the training vectors that correspond to a large error. In our
implementation, we selected the step size δ to be 0.0005.

Because block coordinate descent only requires simple
operations, we expect the bulk of the computational time to
be spent calculating the sparse coefficients rather than updat-
ing the dictionary.

3. EXPERIMENT

The goal of this paper is to demonstrate that learning a dictio-
nary using block coordinate descent of the `1,∞ mixed matrix
norm in the dictionary update step of Algorithm 1 can recover
known anomalies in a dataset. In addition, we wish to show
that it can be done much more quickly than by minimizing the
`1,∞-norm completely at each iteration.

3.1. Dataset Description

We created 6 different datasets with different structure to ex-
plore the effectiveness of the matrix norm subgradient descent
dictionary update. All datasets are 3-sparse linear combina-
tions of 16 different vectors in R64. The 16 underlying vec-
tors associated with the dataset are denoted {b1...b16} and are
referred to as “basis vectors.”

The first four datasets used cosines as the 16 basis vec-
tors: bi(t) = Acos(2π(i)t). The variable t consists of 64
linearly-spaced points over [0,1]. The constant A is chosen to
normalize the basis vector so ‖bi‖ = 1. In two of the datasets,
random gaussian noise was added so the SNR of the training
samples was 30 dB. In one of the clean datasets and one of
the noisy datasets, one basis vector chosen to be an anomaly,
and was included in a single training vector.

The last two datasets used 16 random vectors as the basis
set for the training samples. One of the datasets includes an
anomalous basis vector which only appears once in the train-
ing data. The other dataset uses all 16 basis vectors with equal
probability.

3.2. Dictionary Description

For each dataset, we learned three different dictionaries. Each
dictionary had 16 elements to match the number of known ba-
sis vectors in the datasets. The first dictionary follows the
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Table 1. Summary of results
Dictionary Update `2 `1,∞-CVX `1,∞-BCD

Database Recovers Error Recovers Error Recovers Error
Sinusoid

No Noise, No Anomalies X 5.27 ± 1.29% X 5.96 ± 1.60% X 8.48 ± 1.55%
Noise, No Anomalies X 6.40 ± 1.87% X 6.61 ± 1.97% X 8.18 ± 1.88%
No Noise, One Anomaly misses b11 5.56 ± 3.86% X 5.77 ± 1.60% X 7.98 ± 1.53%
Noise, One Anomaly misses b11 6.54 ± 3.63% X 6.99 ± 2.10% X 8.22 ± 1.91%

Random
No Anomalies misses all 3.25 ± 1.17% X 1.18 ± 0.31% X 3.05 ± 0.59%
One Anomaly misses all 3.12 ± 1.09% X 1.34 ± 0.39% X 2.79 ± 0.47%

format described in Algorithm 1, but the dictionary is up-
dated using several iterations of gradient descent. The second
dictionary is learned by solving the `1,∞-norm minimization
problem at each iteration using CVX [22]. The third dictio-
nary is updated using several iterations of block coordinate
descent with respect to the `1,∞-norm, as described in Sec-
tion 2.3. We denote these three dictionaries as the “`2,” “`1,∞-
CVX,” and “`1,∞-BCD” dictionaries, respectively.

4. RESULTS

4.1. Dictionary Performance

Table 1 reports a summary of how well each dictionary recov-
ered the original basis vectors and models the training vec-
tors. The ‘Recovers’ column associated with each dictionary
update method contains a check mark (X) if each dictionary
recovers all basis vectors. We consider a basis vector to be re-
covered if the angle between the basis vector and the closest
dictionary element is within 10◦. We note that occasionally a
pair of basis vectors is ‘jointly recovered’ by two dictionary
elements (e.g. b1 = d1 + d2 and b2 = d1 − d2). We observed
that the `1,∞ methods often modeled the anomalous training
vector rather than the hidden dictionary element. Because of
this, we relaxed the definition for recovery with respect to the
anomalous basis vector and designate it as ‘recovered’ if it
appears in combination with other recovered basis vectors.

The ’Error’ column of Table 1 reports the average percent
error, as well as the standard deviation (µ ± σ), of the re-
constructed vectors with respect to the original training vec-
tors. The table shows that the `2 and `1,∞-CVX methods have
lower average errors than the `1,∞-BCD method for the sinu-
soidal databases. For the random database, the `1,∞-CVX
outperforms the other two methods.

Another way to determine the success of a dictionary
in modeling the data is by looking at the Euclidean angle
between the dictionary elements and the original basis vec-
tors. Fig. 1 shows examples of this for two of the databases:
the clean sinusoid-basis dataset with one anomaly and the
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Fig. 1. Angle between original basis vectors and learned dictionary ele-
ments. A low angle (black) along the diagonal means that the dictionary was
able to recover that basis vector. The angles are shown for all three dictionary
update methods on two databases—the sinusoid-basis database with no noise
and one anomaly and the random-basis database with one anomaly.

random-basis dataset with one anomaly. For the sinusoid
dataset, all dictionaries recover most of the original basis vec-
tors. We notice, however, that the `2 method fails to recover
the anomalous basis vector, b11. Instead, it recovers what
appears to be a linear combination of b10 and b14. We also
note that the `1,∞-CVX method combines b1 and b5. Notably,
both the `1,∞-CVX and the `1,∞-BCD methods recover the
anomalous basis vector. It is not a problem that both recover
b11 in combination with another basis vector, since the ‘extra’
basis vector can be subtracted out in a sparse reconstruction.
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Table 2. Reconstruction Error of Anomalous Training Vector
Update Method Sinusoid Noisy Sinusoid Random

`2 85.78% 76.50% 5.68%
`1,∞-CVX 3.81% 3.79% 0.84%
`1,∞-BCD 12.41% 12.77% 3.18%

Table 3. Approximate Iteration Time
Update Method Single Iteration 500 Iterations

`2 ≈ 6 seconds ≈ 1 hour
`1,∞-CVX ≈ 90 seconds ≈ 12.5 hours
`1,∞-BCD ≈ 6 seconds ≈ 1 hour

The second column shows the angles between the learned
dictionaries and the original basis vectors for the random-
basis dataset with one anomaly. Again, we see clear structure
along the diagonal in the `1,∞-CVX and `1,∞-BCD dictio-
naries. This structure is missing in the `2 dictionary. Despite
this, we see from Table 1 that the average recovery error as-
sociated with this dictionary is only 3.12%. Therefore, while
the dictionary did not recover the original basis, it was able to
learn a dictionary that represents the training data.

4.2. Anomaly Reconstruction

In addition to looking at how well the dictionaries perform
in recovering all original basis vectors, it is interesting to an-
alyze how well each dictionary models the anomalous basis
vector present in each training set. Fig. 2 shows plots of
the training vector containing the anomaly for each dataset,
as well as the reconstructed training vector associated with
each dictionary. For both sinusoid datasets, the `2 dictio-
nary fails to reconstruct the training vector; it can only re-
construct the portion of the training vector associated with
the non-anomalous basis vector. For the random dataset, all
three methods are able to reconstruct the training vector. Re-
call, that while the `2 method is able to reconstruct all train-
ing vectors in the random dataset, it fails to learn the original
training vectors.

Table 2 gives a quantitative analysis of the reconstruction
error associated with the anomalous training vector. It is in-
teresting to note that the `2 has the worst recovery error in
all three datasets. The table also shows that the `1,∞-BCD
method has a fairly large recovery error of about 12%. In
contrast, the `1,∞-CVX method has an error of about 4%.
However, when looking at Fig. 2, the plots show that both of
these dictionaries are able to visually reconstruct the training
vectors from the sinusoid datasets.

4.3. Computational Efficiency

One large motivation for exploring the subgradient descent
version of the matrix norm was that the `1,∞-CVX method

Clean Sinusoid

`2

`1,∞-CVX

`1,∞-BCD

RandomNoisy Sinusoid

Original

Fig. 2. Original and reconstructed anomalous training vectors. The top row
shows the training vector in each dataset that contained the anomalous basis
vector. The second row shows the reconstruction of this training vector us-
ing the dictionary learned with the standard `2 update. The third row shows
the reconstruction using the dictionary learned with the `1,∞-CVX dictio-
nary update. The bottom row shows the reconstruction using the dictionary
learned with the `1,∞-BCD update. The reconstruction percentage errors
corresponding to these vectors are presented in Table 2.

was very computationally expensive [12]. This method re-
quires solving a convex optimization program at each itera-
tion. Replacing this requirement with computing several it-
erations of block coordinate descent dramatically reduced the
time it took to learn a dictionary, while still producing a dic-
tionary that can model anomalous features of a dataset. Ta-
ble 3 reports the approximate time it took to run a single it-
eration of Algorithm 1 using each dictionary update method,
as well as the approximate time it took to learn the dictionary
(after 500 iterations). For reference, all experiments were run
in MATLAB on a desktop computer with a quad-core i7 pro-
cessor clocked at 3.4 GHz with 16 GB RAM.

5. CONCLUSION AND FUTURE WORK

The work presented in this paper shows a fast method for
learning a sparse coding dictionary that can model known
anomalous features in a dataset. The algorithm is based on
updating the dictionary using several iterations of block co-
ordinate descent with respect to the `1,∞ mixed matrix norm.
We have demonstrated successful recovery on two types of
datasets: one with a set of sinusoidal features, and another
with a set of random features.

While we have shown that our method can quickly learn
a dictionary that models anomalous features, we recognize
some limitations in this work. Moving forward, it would be
interesting to test the usefulness of the learned dictionary in a
classification setting. In particular, this method may be a good
tool for learning features in an unsupervised manner that can
then be used to classify anomalous training samples. It would
also be beneficial to investigate matrix norm dictionary learn-
ing on imbalanced datasets in general, not focusing solely on
anomaly recovery.
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