
REGRESSING KERNEL DICTIONARY LEARNING

Kriti Kumar∗, Angshul Majumdar† M Girish Chandra∗ and A Anil Kumar∗

∗ TCS Research and Innovation, Bangalore, India.
† IIIT Delhi, New Delhi, India.

Email: {kriti.kumar, m.gchandra, achannaanil.kumar}@tcs.com, angshul@iiitd.ac.in

ABSTRACT
In this paper, we present a kernelized dictionary learning framework
for carrying out regression to model signals having a complex non-
linear nature. A joint optimization is carried out where the regres-
sion weights are learnt together with the dictionary and coefficients.
Relevant formulation and dictionary building steps are provided. To
demonstrate the effectiveness of the proposed technique, elaborate
experimental results using different real-life datasets are presented.
The results show that non-linear dictionary is more accurate for data
modeling and provides significant improvement in estimation accu-
racy over the other popular traditional techniques especially when
the data is highly non-linear.

Index Terms— Dictionary learning, kernel methods, method of
optimal directions, regression

1. INTRODUCTION

We are living in the era of data deluge. Even though visual data
has dominated/dominating this deluge, the equation is changing with
huge data emanating from the Internet of Things (IoT)/ Machines.
In order to understand the data and make effective use of them, it
is necessary to have appropriate data-driven methods to capture the
nature of data. With this understanding, one can carry out different
inference tasks like, classification, clustering and regression.

Restricting to data modeling, many of the existing techniques
from the data analysis community can be tried. For any data analy-
sis, it is necessary to identify dependent variables also known as re-
sponses or predicands, and independent variables or predictors. The
relationship between the predictors and responses is described by
a regression function [1]. This function approximation approach is
useful to model the data, to characterize different states of the data
generating source. For example, for Computer Numerical Control
(CNC) machines; given labeled data for normal operation, one can
model the CNC machine performance (appropriate dependent vari-
ables) as a function of several other independent variables which can
be from different sensors. The regression function learnt could then
be used to asses the performance of CNC machine for an unknown
test input. If the estimated and actual response is similar it depicts
normal behavior else a change is detected. If the change is signif-
icant, it can be associated with abnormal/anomalous behavior with
the help of additional information.

Since there is no ”One fits All” solution for carrying out the
modeling addressing different varieties of data, we need to have bas-
ket of techniques. Signal processing can provide systematic frame-
work to arrive at new data-driven models. In this paper, we propose
a kernel dictionary learning framework for carrying out regression.

Since its introduction, dictionary learning has been used pro-
fusely for analysis and synthesis problems especially arising in im-

age processing [2], [3], [4], [5]. The basic formulation is given as:

X =DZ (1)

where, X ∈ RN is the data that is represented by the learnt
dictionary or basisD ∈ RN×K containing atoms as its columns and
the learnt coefficients Z ∈ RK .

The origin of dictionary learning lies in matrix factorization [6]
and sparse coding [7]. The standard matrix factorization problem
can be solved by the Method of Optimal Directions (MOD)[8] by
alternately solving for the two variables:

min
D,Z
‖X −DZ‖2F (2)

For sparse coding problems, where Z is constrained to be
sparse, K-SVD algorithm [9] is more popular. It solves for a dictio-
nary using (3) such that the coefficients are sparse.

min
D,Z
‖X −DZ‖2F s.t.‖Z‖0 ≤ τ (3)

where, ‖Z‖0 is the usual l0 sparsity measure which counts the
number of non-zero elements in Z. This optimization results in a
sparse representation of data which is learnt using maximum τ non-
zero entries of Z.

The unsupervised version of sparse coding has been used pro-
fusely for solving inverse problems like denoising, deblurring, in-
painting, reconstruction [10], [11], [12] etc. Machine learning re-
searchers have used dictionary learning for feature extraction. But
instead of using the basic unsupervised formulation discriminative
penalties are added to (3) for improved analysis [7]. A slightly dated
treatise on this topic is available at [13].

In standard dictionary learning, a dense dictionary needs to be
learnt from the data. There are two issues with this approach 1)
using limited data leads to overfitting; and 2) large scale problems
cannot be handled owing to explicit computations with the dictio-
nary. To address both these issues, doubly sparse dictionary learning
[14] has been proposed. The basic idea is to express the dictionary
as an arbitrary sparse linear combination of fixed basis (e.g. wavelet,
DCT Fourier etc.). The model is expressed as:

X = ΦAZ (4)

Here, Φ is a combination of some pre-defined basis, A is the com-
bining weights that picks up the appropriate basis from Φ to form
the dictionary. Here, bothA andZ need to be learnt. This is framed
as:

min
A,Z
‖X −ΦAZ‖2F s.t. ‖Z‖0 ≤ τ and ‖A‖0 ≤ ρ (5)

The concept of kernel dictionary learning [15] is somewhat re-
lated to doubly sparse dictionary learning; both of them express the
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dictionary as a linear combination of a fixed basis. In kernel dic-
tionary learning, the fixed basis is a non-linear combination of the
data. It is essentially a non-linear mapping from RN to high dimen-
sional feature space F . So, instead of expressing the original data,
as in standard sparse dictionary learning, kernel dictionary learning
expresses the non-linear version of the data in terms of a dictionary
formed by a linear combination of the non-linear version of the data.
Mathematically, this is expressed as [15]:

ϕ(X) = ϕ(X)AZ (6)

where, ϕ(X) is the matrix obtained by transforming X to a
high dimensional feature space F . The learning algorithm is ex-
pressed as:

min
A,Z
‖ϕ(X)−ϕ(X)AZ‖2F s.t. ‖Z‖0 ≤ τ (7)

The optimization problem in (7) is solved using alternate mini-
mization like in the case of dictionary learning.

Few attempts have been made that make use of kernel dictio-
nary learning framework for image classification tasks [16], [17].
Results demonstrate that exploiting non-linear sparsity via learning
dictionaries in a non-linear feature space provides superior perfor-
mance compared to their linear counterparts and kernel PCA. Re-
cently, some works have also reported the use of a unified objec-
tive function to jointly learn the dictionary and sparse linear classi-
fier/regressor [18], [19]. In [18], a label consistent K-SVD algorithm
is presented to learn a discriminative dictionary for sparse coding for
object recognition tasks. The work in [19] presented a fast method
for sparse regression in the presence of missing data. Both these
methods had better performance over other sparse coding based tech-
niques as the label information was utilized for learning via joint
optimization.

Motivated by the method of joint optimization and the need to
handle non-linearities in the data, in this paper, Kernel Dictionary
Learning framework for Regression (KDLR) is proposed. To the
best of our knowledge, there has been no prior study on kernel dic-
tionary learning based regression where the regression formulation
is learnt within the dictionary learning framework. This technique is
shown to outperform the traditional Linear Regression (LR), Kernel
Regression (KR), Least Absolute Shrinkage and Selection Operator
(LASSO) and Dictionary Learning based techniques for regression
(DLR) especially when the data (times series) exhibits certain com-
plex non-linear evolution.

To elaborate on the proposed framework and demonstrate its ap-
plicability for regression analysis, the rest of the paper is organized
as follows. Section 2 describes the proposed kernelized dictionary
learning based approach for regression. Subsequently, Section 3 dis-
cusses the performance of the proposed algorithm using different
datasets and Section 4 concludes the work.

2. KERNEL DICTIONARY LEARNING FOR REGRESSION

Given a multi-variate data of N samples, let X ∈ RL×N represent
the independent variables of feature vector length L and y ∈ RN

represent the dependent variable. We propose to incorporate a ridge
regression penalty into the kernel dictionary learning framework for
carrying out a joint optimization where the dictionary atoms, coeffi-
cients and the regression weights are learnt together. Kernelization
takes care of the non-linearities in the system and hence a simple
linear regression formulation is sufficient after the transformation.
Mathematically, the proposed formulation is given as:

min
A,Z,w

‖ϕ(X)−ϕ(X)AZ‖2F + λ‖y − wZ‖22 + µ‖w‖22 (8)

where,ϕ(X) = [ϕ(x1), ...,ϕ(xN)],A ∈ RN×K is the atom rep-
resentation dictionary,Z ∈ RK×N are the coefficients andw ∈ RK

are the regression weights. It is to be noted that in (8), the spar-
sity term is not included since the focus of this work is on regres-
sion, where we would be considering undercomplete dictionaries.
The sparsity penalty was carried forth in some of the earlier works
[18], [20] on classification, largely because KSVD was used as the
workhorse algorithm for the associated dictionary learning.

Like any machine learning technique, the proposed technique
has a training phase where, the dictionary atoms, coefficients and
regression weights are learnt and a test phase where, the learnt dic-
tionary and regression weights are used for estimating the response
variable. These two phases are explained in detail below.

2.1. Training Phase
We follow the standard alternating minimization approach to solve
(8). The sub-problems required to be solved are:

A← min
A
‖ϕ(X)−ϕ(X)AZ‖2F (9)

Z ← min
Z
‖ϕ(X)−ϕ(X)AZ‖2F + λ‖y − wZ‖22 (10)

w ← min
w

λ‖y − wZ‖22 + µ‖w‖22 (11)

Solving forA using (9) results in the same update as given in [15]:

A = ZT (ZZT )−1 (12)

The update for Z is obtained by taking the derivative of the ex-
pression in (10) and equating it to 0. After some simple mathemati-
cal manipulations, one arrives at the modified normal equations (one
of the contributions of this work):

(ATK(X,X)A+ λwTw)Z = ATK(X,X) + λwTy
(13)

Here, K(X,X) ∈ RN×N is the kernel matrix of finite dimen-
sion whose elements are computed from:
κ(xi, xj) = ϕ(xi)

Tϕ(xj) ∀i, j = 1, ..., N .
Equation (13) has an analytic solution, but for large volume of data,
the kernel matrix is huge so it is not advisable to invert explicitly.
One can use a few steps of Conjugate Gradient (CG) to solve (13)
instead.

The update for the regression weights w is trivial since it is a
simple least squares problem and is given as:

w(λZZT + µI) = λyZT (14)

where, I is an all ones matrix of size K × K. This concludes the
training phase.

2.2. Test Phase
During testing, given a new test sample xtest, we estimate the cor-
responding dependent variable or output ŷtest, by first computing
the corresponding feature ztest. The model is expressed as follows:

ϕ(xtest) = ϕ(X)Aztest (15)

Note that the dictionary does not change from the training phase;
it is still defined by the linear combination of the non-linear version
of training data. The solution for ztest is formulated as:

min
ztest

‖ϕ(xtest)−ϕ(X)Aztest‖2F (16)
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Following the derivation as before, one finds that,

ATK(X,X)Aztest = ATK(xtest, X)T (17)

where, K(xtest, X) = [κ(xtest, x1), ...κ(xtest, xN)].
One can either solve (17) explicitly by computing the inverse (for
small problems) or solve it efficiently using CG. Once the feature
ztest is obtained, it is multiplied by the learnt regression weights to
get the ŷtest.

ŷtest = wztest (18)
The pseudo code of the KDLR algorithm is presented in Algo-

rithm 1.

Algorithm 1 Kernel Dictionary Learning for Regression (KDLR)
Input: Set of training data, X = Xtrain, y = ytrain, K (size
of dictionary), parameters (λ, µ) and kernel function κ, test data
xtest

Output: Learnt dictionary A, weight vector w, estimated output
ŷtest
Initialization: Set Z0 to random matrix with real numbers between
0 and 1 drawn from a uniform distribution, w0 = y/Z and A0 =
O, iteration i = 1

1: procedure
2: loop: Repeat until convergence (or fixed number of iterations
Maxitr)

3: Ai ← ZT
i−1(Zi−1Z

T
i−1)−1

4: Normalize each column inAi to a unit norm
5: Zi ← update usingAi &wi−1 using (13)
6: wi ← λyZT

i (λZiZ
T
i + µI)−1

7: i← i+ 1
8: if ‖Ai −Ai−1‖F < Tol or i ==Maxitr then
9: ztest ← (ATK(X,X)A)−1ATK(xtest, X)T

10: ŷtest ← wztest
11: close;
12: else go to loop

3. PERFORMANCE STUDY AND DISCUSSION

In this section, we demonstrate the performance of the proposed
framework of kernel dictionary learning for regression tasks. Apart
from synthetic data, three real-life datasets are considered. The esti-
mation results of the proposed KDLR algorithm are presented along
with those obtained from Linear Regression (LR), Kernel Regres-
sion (KR) [21], Least Absolute Shrinkage and Selection Operator
(LASSO) and traditional Dictionary Learning (DLR) framework for
comparative study. DLR method considered similar joint optimiza-
tion mentioned in (8) worked out for non-kernelized data. For all
the datasets, 90% of the data samples are randomly selected (using
5-fold cross validation) for training and the remaining are used for
testing. Parameters λ & µ of KDLR are carefully tuned through ex-
tensive search for each dataset. Gaussian kernel has been used for
both KR and KDLR methods.

A. Synthetic Dataset: The non-linear data simulated in [22],
[23] is considered for evaluation by taking 3 predictors and 1 re-
sponse variable. The data comprising of 500 samples is l2 normal-
ized before applying different regression methods. The estimation
results of the response variable using different methods are presented
in Fig 1. Table 1 summarizes the estimation results in terms of Mean
Squared Error (MSE) and Pearson’s Correlation Coefficient (PCC)
for all the methods. It can be seen that KDLR is able to estimate
the peaks much better than other methods and has the least MSE and
highest PCC.
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Fig. 1: Response variable estimation with different methods

Table 1: Results with Synthetic Dataset
Algorithm MSE PCC
KDLR (K = 20, σ = 0.5) 0.036 ± 0.010 0.918
KR 0.054 ± 0.013 0.873
LR 0.135 ± 0.019 0.607
DLR (K = 3) 0.134 ± 0.019 0.608
LASSO 0.137 ± 0.012 0.607

B. Public Datasets: Two UCI datasets are considered for regres-
sion analysis and are described in brief below.

(i) Energy Efficiency - This dataset is used to assess the heat-
ing load and cooling load requirements of buildings as a function
of building parameters (Relative compactness, Surface area, Wall
area, Roof area, Overall height, Orientation, Glazing area, Glazing
area distribution) [24]. The dataset is comprised of 768 samples and
8 features as mentioned above from 12 different building shapes.
Heating load is modeled as a function of the building parameters.
The estimation results of the test data using different methods are
presented in Fig 2. Table 2 gives the MSE and PCC of the estima-
tion results obtained using different methods. Here again, KDLR
is able to track the peaks in the heating load much better than its
counterparts.
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Fig. 2: Heating load estimation with different methods

(ii) Wine Quality - This dataset is used to model wine quality
based on physicochemical tests [25]. It has 1599 samples of 11
physicochemical tests features for Red wine (Fixed acidity, Volatile
acidity, Citric acid, Residual sugar, Chlorides, Free sulfur dioxide,
Total sulfur dioxide, Density, pH, Sulphates, Alcohol). The data is
normalized before applying it to different regression methods. Fig-
ure 3 presents the wine quality estimation results and Table 3 sum-
marizes the estimation performance for different methods. The esti-
mation results can also be visualized as a box plot, Fig. 4 gives a box
plot of the MSE with the median value marked in red. It can be seen
that the performance of proposed KDLR is closely similar to that of
KR, but the median value of error for KDLR is low as compared to
KR.

C. Smart Factory Dataset: This is a factory data acquired from
Vertical Milling Center (VMC) which is a 4-axis CNC machine
manufacturing precision machined components. In manufacturing,
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Table 2: Results with Energy Dataset
Algorithm MSE PCC
KDLR (K = 20, σ = 6) 7.985 ± 1.123 0.962
KR 9.164 ± 1.652 0.955
LR 9.617 ± 2.407 0.953
DLR (K = 5) 19.133 ± 4.310 0.905
LASSO 13.382 ± 3.807 0.945
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Fig. 3: Wine quality estimation with different methods

a component undergoes a number of machining operations like,
roughing, milling, etc before resulting in a finished product. All
these operations are performed by CNC machines. The performance
of the machine can be studied by modeling the power and current
(in terms of Spindle load and Axis-servoloads) consumed by the
machine while performing a certain operation using a set defined
machining parameters (Spindle speed, 3-axis Tool positions, 3-axis
Feeds and Feed rate). This performance metric can be used to assess
the health of the machine and condition of the cutting tools.

This dataset is comprised of 1 second sampled values of power,
current and machining parameters used by the machine while per-
forming a particular operation. Due to the massive size of the data,
in our study 5817 samples are used for regression analysis which
contains sufficient instances of similar machining operation for mod-
eling. The kernel dictionary in KDLR, is learnt usingK = 10 atoms
and Gaussian kernel with σ = 2000. Traditional dictionary in DLR,
is learnt using K = 8 atoms for carrying out regression. Figure
5 gives the comparative Spindle load estimation results for Pocket
Rough operation using different regression methods. The box plot of
the MSE in Fig. 6 demonstrate the superior performance of KDLR
for modeling the machining operation over the linear methods. Its
performance is however, closely similar to that KR but with less vari-
ance in the estimation error. This model has been used to ascertain
abnormal operation of the machines in the real scenario, although
the relevant results are not captured here.

Couple of remarks are worth noting. For any multi-variate anal-
ysis, the variables are appropriately normalized before subjecting
them to processing. As is evident from the results, for the given
normalization, the proposed technique performed better than its
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Fig. 4: Box plot of MSE for wine quality estimate

Table 3: Results with Wine Quality Dataset
Algorithm MSE PCC
KDLR (K = 10, σ = 1.4) 0.016 ± 0.002 0.617
KR 0.016 ± 0.001 0.641
LR 0.021 ± 0.003 0.487
DLR (K = 10) 0.021 ± 0.003 0.500
LASSO 0.017 ± 0.002 0.591

counterparts for the datasets considered (due to space limitation,
the box plots are not provided for all the datasets). Secondly, the
performance of dictionary-based regression depends on the number
of atoms. For KDLR, with the first stage of non-linear transforma-
tion, larger dictionary (than the feature vector length) facilitates the
accurate representation of the transformed features. Thus, one can
expect good data modeling with an appropriately large dictionary,
beyond which there will be marginal improvement (needless to say,
it is data dependent). This fact is extensively studied for KDLR
and DLR, and in comparing the performance, the appropriate size is
accounted for each of them.
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Fig. 5: Spindle load estimation with different methods
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4. CONCLUSION

We have presented a kernelized dictionary learning approach for car-
rying out regression to model signals/time-series having complicated
non-linear evolution. The relevant optimization formulation and the
dictionary building steps are elaborated. Experimental results ob-
tained with different real-life datasets demonstrate the potential of
the proposed algorithm in effective modeling of the data. This tech-
nique offers significant improvement in estimation accuracy over the
other popular traditional techniques. The work can be extended to
handle multiple response variables. Also, one can consider deep dic-
tionaries for more accurate modeling to represent the data. Addition-
ally, one can also think of working out kernelized regressors using
graph signal based dictionaries to effectively capture the complex
inter-relationships among the multi-variate data samples.
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