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ABSTRACT
In recent history, dictionary learning (DL) methods have been
successfully used for analyzing multi-subject functional mag-
netic resonance imaging. These algorithms try to learn group-
level spatial activation maps (SM) or voxel time courses (TC)
from temporally or spatially concatenated fMRI datasets re-
spectively. However, in multi-subject fMRI studies, we are
interested in both group-level TCs as well as SMs. In this pa-
per, we propose a DL algorithm which combines temporally
and spatially concatenated fMRI datasets to learn not only
the shared TC/SM pairs but also the subject-specific ones. We
do this by separating group-level information and sub-specific
information from each subject fMRI dataset. Performance of
the proposed algorithm is illustrated using simulated as well
as experimental task fMRI datasets.

Index Terms— functional magnetic resonance imaging
(fMRI), dictionary learning, temporal concatenation, spatial
concatenation, multi-subject analysis.

1. INTRODUCTION

In recent years, dictionary learning (DL) algorithms have
been extensively used in signal and image processing fields.
These methods have been applied to problems like face recog-
nition [1, 2], image denoising [3, 4], and fMRI data analysis
[5–10]. In DL framework, given a set of training signals, the
aim is to learn a dictionary D that can represent each signal
using the linear combination of only a few atoms from the
dictionary. The training signals are modeled as yi = Dxi+εi,
where yi is the ith training signal, D is the dictionary, xi is
the ith sparse coefficient vector and εi is the representation
error. Starting with a set of training signals Y, in most cases,
the DL problem is solved by alternating between a sparse
coding stage followed by dictionary update stage leading to
the minimization of a specific cost function.
Under DL formulation, an fMRI dataset Y is decomposed
into a dictionary matrix D and a sparse coefficient matrix X
such that each voxels’ time course (TC) can be approximated
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using only few atoms from the dictionary. Under such for-
mulations, the learned dictionary atoms represent significant
neuronal temporal dynamics and the rows of sparse coeffi-
cient matrix represent the respective spatial activation maps
(SM) [11]. The DL methods have been extended to analyze
multi-subject (MS) [11–14] fMRI datasets as well. These
methods generate group level SMs and sub-specific temporal
dynamics by using temporally concatenated datasets [13], or
learn group-level dynamics and subject-level SMs by using
spatial concatenation [12]. However, we might be interested
in learning both group-level temporal dynamics and spatial
maps which are of particular interest in task-based fMRI
studies.
In this paper we present a DL algorithm which decomposes
the MS fMRI datasets into a shared dictionary/sparse code
pair as well as sub-specific ones leaving us with multiple dic-
tionary/sparse code pairs containing shared as well as unique
sources of information about the analyzed fMRI datasets.

2. DICTIONARY LEARNING FORMULATION FOR
MULTI-SUBJECT FMRI DATASETS

2.1. Dictionary Learning Formulation

Starting with an fMRI dataset Y = [y1, y2, ..., yN ], containing
N variables (brain voxels) with n observations (time points),
where yi ∈ Rn contains the observations for ith variable.
According to the sparse representation theory, all variables in
Y can be compactly represented as Y = D X, where D ∈
Rn×K is the dictionary, X ∈ RK×N is the sparse coefficient
matrix. In DL methods, the aim is to learn such a dictionary
which makes this compact representation possible. A typical
DL problem is formulated as:

min
D,X
||Y− D X||2F s.t. ‖ xi ‖0≤ s, , ‖dk‖2 = 1 (1)

where dk is the kth column of D, ‖ . ‖F is the Frobenius
norm, ‖ . ‖0 is the `0 quasi-norm, counting the number of
nonzero coefficients, ‖.‖2 is the `2 norm, and the sparsity
constraint s� K . The constraint on D keeps the atoms from
getting arbitrarily large which could’ve lead to small values
of xi [3]. The resulting D and X matrices contain K dense
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TCs and K sparse group level SMs respectively [11].
In the next section, we propose a DL algorithm which de-
composes the multi-subject fMRI datasets into shared and
unique dictionary/sparse code pairs containing shared and
sub-specific TCs and SMs respectively.

2.2. Proposed Dictionary Learning Algorithm

In the proposed DL algorithm, our aim is to decompose p
subject fMRI datasets in a structured way, i.e. we aim to rep-
resent each voxels’ time course from Yi (i-th subject dataset)
as a linear combination of a few atoms from D0 (shared) and
Di (sub-specific) dictionaries such that

Yi ' D̃i X̃i = [D0,Di]

[
X0

Xi

]
= D0X0 + DiXi (2)

where the shared dictionary D0 and sub-specific dictionary Di

are matrices of size n × K0 and n × Ki respectively, X0 is
of size K0 × N representing the sparse codes of Yi over D0

and Xi is of size Ki ×N representing the sparse codes of Yi

over Di. As a result of such formulation, we not only require
D0/X0 pair to capture the shared information across multi-
subject datasets, but also require Di/Xi pair to capture the
sub-specific unique information as well. To achieve this goal,
we propose to solve the following minimization problem:

min
D̃i,X̃i

p∑
i=1

{1
2
‖Yi − D0X0 − DiXi‖2F +

η

2
‖D>i Ai‖2F }

s.t. ‖xmi ‖0 ≤ si,‖xm0 ‖0 ≤ s0, ‖dk‖2 = 1

∀ i = 1, 2, . . . ,p and m = 1, 2, . . . , N

(3)

where xmi is the m-th column of Xi, si, s0 are the signal
sparsity parameters, η is the incoherence penalty param-
eter, and p is the number of subjects selected for analy-
sis. The first term in (3) is the representation error term
and second is the sub-dictionary incoherence term. Here
Ai = [D0,D1, . . . ,Di−1,Di+1, . . . ,Dp] is the concatenation
of all except currently updating dictionary. The incoherence
term in the objective function is included to learn incoherent
dictionaries which have been shown to improve the effective-
ness of sparse representation [15].
The objective in (3) is non-convex, however, an approx. so-
lution is possible when all but one of the variables are fixed.
Thus its minimization can be carried out in an alternating
optimization fashion, i.e. fixing (D0,Di), first optimize for
(X0,Xi) followed by updating (D0,Di) with fix (X0,Xi)
repeating till convergence. The details of these minimizations
are given in coming sections.

2.2.1. Sparse Coding Stage

With dictionaries (D0,Di) and sub-specific sparse codes Xi

fixed, we first update X0, by minimizing

X̂0 = min
X0

1

2
‖Ete − DteX0‖2F ; s.t. ‖xm0 ‖0 ≤ s0 (4)

where Ete = 1√
p

[
E>1 ,E

>
2 , . . . ,E

>
p

]>
is the temporally con-

catenated residual matrix containing subject level residuals
Ei = Yi − Di Xi and Dte ∈ Rnp×K0 contains temporally
concatenated p copies of the shared dictionary D0. Here we
have included a factor of 1/

√
p to indirectly control the en-

tries of X0. After X0 update, we fix it and update Xi for all p
subject by solving:

X̂i = min
Xi

1

2
‖Bi − DiXi‖2F ; s.t. ‖xmi ‖0 ≤ si (5)

where Bi = Yi − D0X0. Here we opt to use the Orthogonal
Matching Pursuit (OMP) algorithm [16] to efficiently solve
(4) and (5). In our implementation, we iterated the complete
sparse coding stage two times as further iterations did not lead
to significant improvement.

2.2.2. Dictionary Update Stage

After sparse coding stage, with fix sparse matrices (X0,Xi)
and sub-specific dictionaries Dis, we solve for shared info
dictionary D0 by solving:

D̂0 = min
D0

1

2
‖Esp − D0Xsp‖2F +

η

2
‖D>0 A0‖2F s.t. ‖dk‖2 = 1

(6)
where Esp = [E1,E2, . . . ,Ep] is the spatially concatenated
residual matrix containing subject level residuals Ei = Yi −
Di Xi and Xsp contains spatially concatenated p copies of the
shared sparse code matrix X0 ∈ RK0×pN . After D0 update,
keeping it fixed, the p sub-specific Dis are found by solving:

D̂i = min
Di

1

2
‖Bi−DiXi‖2F+

η

2
‖D>i Ai‖2F s.t. ‖dk‖2 = 1 (7)

where Bi = Yi−D0X0. Both (6) and (7) are constrained con-
vex quadratic optimization problems and we adopt the pro-
jected gradient method [17] to sequentially update all atoms
of the dictionaries. Thus, the update rule for (6) is given by:

dt+0.5
k0

= dt
k0

+ µk0

(
Espxk0>

sp − D0Xspxk0>
sp − ηA0A>0 dt

k0

)
dt+1
k0

= dt+0.5
k0

/‖dt+0.5
k0

‖2
(8)

where dt
k0

is k0-th atom of D0 at t-th iteration, xk0
sp is the

k0-th row of Xsp, A0 = [D1,D2, . . . ,Dp] , and µk0 =
1/‖xk0

spxk0>
sp ‖2 is the step-size parameter. Similarly the update

rule for (7) is given by:

dt+0.5
ki

= dt
ki

+ µki

(
Bixki>

i − DiXixki>
i − ηAiA>i dt

ki

)
dt+1
ki

= dt+0.5
ki

/‖dt+0.5
ki

‖2
(9)

where Ai is the concatenation of all but currently updating
dictionary and µki = 1/‖xki

i xki>
i ‖2. The complete learning

method is summarized in algorithm 1.
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Algorithm 1: The proposed algorithm
Input: fMRI datasets Yi, K0,Ki, s0, si, η, and noIt

1 Initialization: Initialize D0, and Di with
`2-normalized random vectors.

2 for t = 1 : noIt do
3 Fix D0, Di and use OMP to solve (4) for X0 and (5)

for Xi ∀ i = 1, . . . , p.
4 Fix X0, Xi and sequentially update dictionaries D0

using (8) and Di using (9) ∀ i = 1, . . . , p.
Output: D0,X0,Di,Xi

Table 1. Mean, median, and standard deviation of most cor-
related TCs and SMs w.r.t. GrTr over 100 trials.

SNR dB Algorithm
TCs SMs

Mean Median STD Mean Median STD

-10
Proposed 0.98 0.98 0.02 0.87 0.88 0.05

CODL 0.95 0.95 0.03 0.79 0.82 0.14

-15
Proposed 0.92 0.96 0.08 0.69 0.66 0.18

CODL 0.68 0.68 0.23 0.44 0.27 0.34

3. EXPERIMENTAL RESULTS

In this section we use simulated and real multi-subject task-
fMRI datasets to illustrate our proposed algorithms’ ability
to learn shared (group-level) info and unique (sub-specific)
info separately while providing performance comparison with
CODL [13] algorithm as well.

3.1. Simulation Study

In simulation study, we generate p = 6 fMRI datasets using
the publicly available SimTB toolbox [18]. We simulated spa-
tial maps (SM) of size (100×100) voxels and their respective
time courses (TC) having 150 time points with a repetition
time TR = 2 secs. Each subject dataset Yi ∈ R150×104 con-
sisted of 4 TC/SM pairs with 1 sub-specific pair (unique info)
and 3 group-level pairs (shared info). To simulate spatial vari-
ability in the group-level SMs, we introduced random trans-
lations (µ = 0, σ = 2 voxels) in x and y directions, scaling
(µ = 1, σ = 0.03), and rotations (µ = 0, σ = 2.5 degrees),
where µ and σ are the mean and standard deviation of a
Gaussian distribution. Similarly temporal variability across
subjects was also introduced. A sample of simulated TC/SM
pairs is shown in Fig 1 a). Here, the pairs (1, 2, 3) are present
in all datasets while (4− 9) are the unique sub-specific pairs.
AWGN noise corresponding to SNR = {−10,−15} dB was
introduced into the datasets and resulting noisy datasets were
passed to the proposed and CODL algorithm for decomposi-
tion.
The datasets were decomposed by the proposed algorithm
into shared info pair (D0/X0) and sub-specific pairs (Di/Xi).
The learning parameters (K0,Ki, s0, si, η) were set to (10, 5,

2, 1, 10) and the algorithm was iterated noIt = 20 times. For
a fair comparison, we opted not to temporally reduce the
datasets to compare with CODL [13], which essentially re-
duces to ODL [19] when applied to full datasets. Thus we
used the temporally concatenated datasets Y as input to the
ODL to learn a dictionary of size 900 × 20 with λ = 0.15,
batch size of 200 and 50 iterations. We tried multiple param-
eters for both algorithms and selected the ones resulting in
best overall performance in terms of correlation between re-
covered TC/SMs and their ground truth (GrTr) counterparts.
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Fig. 1. a) The simulated ground truth TC/SMs and their b)
mean correlation coefficients w.r.t. D0,Di and X0,Xi (b) over
100 trials for SNR = 0 dB.

The experiment was repeated 100 times with different datasets
and the highest correlation coefficients of GrTr w.r.t. recov-
ered TC/SM were saved. The overall results are given in table
1 where it is evident that the proposed algorithm was able to
recover the underlying sources very effectively as compared
to CODL. Now to check whether the TC/SM pairs have been
separated into their respective D/X pairs, we correlated the
GrTr TCs with the recovered D0 and Dis and SMs with X0

and Xis for every trials and have presented the mean results
as correlation matrices in Fig. 1 b). Here it can be seen that
the sub-specific TC/SM pairs (4 − 9) have been successfully
recovered only in their respective Di/Xi pairs. Whereas, the
most highly correlated shared pairs are found in D0/X0 pairs
and the subject variability has been captured in Di/Xi pairs
as well.

3.2. Multi-subject task fMRI Analysis

In this section we have used p = 7 subject motor task fMRI
datasets from human connectome project (HCP) Q1 release
[20] for the analysis. During image acquisition, following
a visual cue, each subject was asked to move their left toe,
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Fig. 2. Most correlated D0 atoms (red) with their respective PTCs (blue) recovered by a) proposed algorithm, b) CODL. The
corresponding correlation coefficients are also given inside parenthesis above each TC plot. Most informative population level
z-scored (p < 0.001) activation maps recovered by c) proposed algorithm and d) CODL.

right toe, left finger, right finger, and tongue to map the mo-
tor areas of the brain. Repetition time of TR = 0.72s was
used for image acquisition. Reader is referred to [8] section
V-B for experimental setup and preprocessing details. After
preprocessing, a brain mask was used to remove data outside
the brain. Each brain volume was vectorized and placed as
rows of a data matrix Yi ∈ Rn×N , i ∈ {1, . . . , p} where
n = 284 are the time points and N = 283494 are the total
brain voxels.
The proposed algorithm was used to decompose the multi-
subject datasets into a shared info D0/X0 pair and sub-
specific ones. The learning parameters (K0,Ki, s0, si, η)
were set to (30, 20, 1, 2, 500). The algorithm was iterated
10 times as the relative change in the dictionary atoms
was very small after 6 iterations. Similar to the simula-
tion section, CODL algorithm was used to learn a dictionary
DODL ∈ Rnp×70 with λ = 6 [13], batch size of 2000 and
100 iterations.
Using the task timing information, we generated 6 paradigm
time courses (PTCs) by convolving the canonical HRF with
the boxcar signals. As all subjects were performing the same
task, we expect to find the corresponding TCs and respective
SMs in the shared info pair D0/X0. Thus we correlated the
6 PTCs with all recovered dictionaries and found that this
was indeed the case. These most correlated TCs w.r.t. PTCs
from D0 and DODL are shown in Fig. 2 a) and b), followed
by thr respective activation maps from X0 in Fig. 2 c) and
the maps recovered by CODL are shown in Fig. 2 d). The
activation maps recovered by both algorithm are very similar
and are correctly localized in the Sensorimotor cortex and
Visual cortex areas of the brain. However the recovered TCs
extracted by proposed algorithm are much better matched to
the PTCs as compared to CODL’s recovered TCs.
To analyze the sub-specific dictionaries, we took a slightly

Table 2. Correlation coefficients of most correlated spatial
maps w.r.t. the RSN templates as recovered by proposed al-
gorithm and CODL.

RSN 1 2 3 4 5 6 7 8 9 10 Mean

Proposed 0.55 0.48 0.57 0.60 0.41 0.44 0.47 0.41 0.55 0.57 0.51
CODL 0.72 0.71 0.43 0.47 0.31 0.34 0.36 0.31 0.49 0.37 0.45

different approach. In [21], the authors have shown the ex-
istence of ten well-established resting state networks (RSNs)
[22] in the experimental task datasets. Although these RSNs
might be present in all subject datasets, but their respective
TCs are not bound to be similar. Based on this intuition, we
expect to find these RSNs in the sub-specific Xis. Using the
RSN templates from [22], we correlated them with every Xi

and stored the most correlated ones for each subject. Using
the most correlated RSNs from each subject, we generated 10
average RSN maps. For comparison, the correlation of these
averaged RSN maps and those recovered by CODL w.r.t. the
RSN templates are given in table 2. Here it can be seen that
the RSN maps recovered by the proposed algorithm show
better correlation w.r.t. the templates as compared to CODL.

4. CONCLUSION

In this paper we proposed a new dictionary learning algorithm
which can separate the shared and sub-specific information
from multi-subject fMRI datasets. A simulation example was
used to highlight performance of the proposed algorithm fol-
lowed by comparison with CODL. Multi-subject task fMRI
datasets were also used to show that the algorithm was able
to separate the shared from the sub-specific information with
high precision.

2754



5. REFERENCES

[1] T. H. Vu and V. Monga, “Fast low-rank shared dictio-
nary learning for image classification,” IEEE Transac-
tions on Image Processing, vol. 26, no. 11, pp. 5160–
5175, 2017.

[2] A. Iqbal and A. K. Seghouane, “An approach for se-
quential dictionary learning in nonuniform noise,” in
2017 International Conference on Digital Image Com-
puting: Techniques and Applications (DICTA), 2017,
pp. 1–5.

[3] M. Elad and M. Aharon, “Image denoising via sparse
and redundant representations over learned dictionar-
ies,” Image Processing, IEEE Transactions on, vol. 15,
no. 12, pp. 3736–3745, 2006.

[4] A. K. Seghouane and M. Hanif, “A sequential dictionary
learning algorithm with enforced sparsity,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE In-
ternational Conference on, 2015, pp. 3876–3880.

[5] M. U. Khalid and A. K. Seghouane, “Improving
functional connectivity detection in fMRI by combin-
ing sparse dictionary learning and canonical correlation
analysis,” in 2013 IEEE 10th International Symposium
on Biomedical Imaging (ISBI), pp. 286–289.

[6] M. U. Khalid and A. K. Seghouane, “A single svd sparse
dictionary learning algorithm for fmri data analysis,” in
2014 IEEE Workshop on Statistical Signal Processing
(SSP), 2014, pp. 65–68.

[7] M. U. Khalid and A. K. Seghouane, “Multi-subject
fMRI connectivity analysis using sparse dictionary
learning and multiset canonical correlation analysis,” in
2015 IEEE 12th International Symposium on Biomedi-
cal Imaging (ISBI), pp. 683–686.

[8] A. K. Seghouane and A. Iqbal, “Sequential dictionary
learning from correlated data: Application to fMRI data
analysis,” IEEE Transactions on Image Processing, vol.
26, no. 6, pp. 3002–3015, 2017.

[9] A. K. Seghouane and A. Iqbal, “Basis expansions ap-
proaches for regularized sequential dictionary learning
algorithms with enforced sparsity for fMRI data analy-
sis,” IEEE Transactions on Medical Imaging, vol. 36,
no. 9, pp. 1796–1807, 2017.

[10] A. K. Seghouane and A. Iqbal, “A regularized sequential
dictionary learning algorithm for fMRI data analysis,”
in 2017 IEEE 27th International Workshop on Machine
Learning for Signal Processing (MLSP), 2017, pp. 1–6.

[11] J. Lv, X. Jiang, X. Li, et al., “Sparse representation
of whole-brain fMRI signals for identification of func-
tional networks,” Medical Image Analysis, vol. 20, no.
1, pp. 112–134, 2015.

[12] A. K. Seghouane and A. Iqbal, “CSMSDL: A com-
mon sequential dictionary learning algorithm for multi-
subject fMRI data sets analysis,” in 2017 IEEE Inter-
national Conference on Image Processing (ICIP), 2017,
pp. 1–5.

[13] A. Mensch, G. Varoquaux, and B. Thirion, “Com-
pressed online dictionary learning for fast resting-state
fMRI decomposition,” in 2016 IEEE 13th International
Symposium on Biomedical Imaging (ISBI), pp. 1282–
1285.

[14] A. Iqbal, A. K. Seghouane, and T. Adali, “Shared and
subject-specific dictionary learning algorithm for multi-
subject fMRI data analysis (ShSSDL),” IEEE Transac-
tions on Biomedical Engineering, pp. 1–10, 2018.

[15] S. Ubaru, A. K. Seghouane, and Y. Saad, “Improving the
incoherence of a learned dictionary via rank shrinkage,”
Neural computation, vol. 29, no. 1, pp. 263–285, 2017.

[16] J. Tropp and A. C. Gilbert, “Signal recovery from ran-
dom measurements via orthogonal matching pursuit,”
Information Theory, IEEE Transactions on, vol. 53, no.
12, pp. 4655–4666, 2007.

[17] P. H. Calamai and J. J. More, “Projected gradient meth-
ods for linearly constrained problems,” Mathematical
programming, vol. 39, no. 1, pp. 93–116, 1987.

[18] E. B. Erhardt, E. A. Allen, Y. Wei, et al., “SimTB, a
simulation toolbox for fMRI data under a model of spa-
tiotemporal separability,” NeuroImage, vol. 59, no. 4,
pp. 4160–4167, 2012.

[19] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online
Learning for Matrix Factorization and Sparse Coding,
pp. 19–60, JMLR.org, 2010.

[20] D. M. Barch, G. C. Burgess, M. P. Harms, et al., “Func-
tion in the human connectome: Task-fMRI and individ-
ual differences in behavior,” NeuroImage, vol. 80, pp.
169–189, 2013.

[21] S. Zhao, J. Han, J. Lv, et al., “Supervised dictionary
learning for inferring concurrent brain networks,” IEEE
Transactions on Medical Imaging, vol. 34, no. 10, pp.
2036–2045, 2015.

[22] S. M. Smith, P. T. Fox, K. L. Miller, et al., “Correspon-
dence of the brain’s functional architecture during acti-
vation and rest,” Proceedings of the National Academy
of Sciences, vol. 106, no. 31, pp. 13040–13045, 2009.

2755


