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ABSTRACT
Various dictionary learning methods have gained tremendous
success for signal classification. However, traditional dic-
tionary learning methods for classification assume there is
no outlier in the training data, which may not be the case
in practical applications. In this paper, we propose a new
discriminative dictionary learning framework for classifica-
tion, which simultaneously learns a discriminative dictionary
and detects outliers in the data. We formulate the dictio-
nary learning framework into an optimization problem with
designed regularizers to promote both the discrimination
and outlier-detection capability. An efficient and effective
iterative algorithm based on the alternating direction method
of multipliers (ADMM) is provided to solve the proposed
optimization problem. We demonstrate the superior perfor-
mance of the proposed approach in comparison with state-
of-the-art methods on some image classification tasks.

Index Terms— Dictionary learning, classification, sparse
representation.

I. INTRODUCTION

The theory and algorithms of sparse signal representation
have made a rapid development in the past years. They
have been playing a central role in signal compression and
proved to be very useful in many applications in the filed of
signal processing, such as signal acquisition, denoising, and
classification [1]–[9]. In the perspective of the sparse signal
representation, a signal can be seen as a linear combination
of a few atoms selected from a complete or over-complete
dictionary, where each atom represents as a column of the
dictionary.

The goal of dictionary learning is to learn a basis from
a collection of signals so that they can be sparsely rep-
resented. By using a dictionary, a signal is transformed
into a new representation in a higher dimensional space,
where somewhat challenging problems, e.g., classification,
may become easier. In contrast to the sparse representation
task which concerns the approximation accuracy, the goal of
classification is to determine the correct class label for the

query signal. Therefore, it would be beneficial to make the
learned dictionary have discriminative capability. Existing
discriminative dictionary learning approaches in literature
can be roughly divided into two categories.

Approaches in the first category learn a class-specific sub-
dictionary for each signal class, and these sub-dictionaries
together constitute the complete dictionary [10]–[12]. How-
ever, the size of the sub-dictionary for each class needs to be
predefined, and these approaches involving sub-dictionaries
are not scalable with a large number of classes. Approaches
in the second category learn a dictionary that is shared by
all classes [6], [13], [14]. All of these methods exploit all
training samples to learn a dictionary.

Generally, it is more likely to obtain a better discriminative
dictionary if more training data are given and the learning
algorithm is designed appropriately. In most of the existing
work on dictionary learning for classification, it is assumed
there is no outlier in the training data, which may not be
the case in practical applications. In this paper, we propose
a new discriminative dictionary learning framework, which
simultaneously learns a discriminative dictionary and detects
outliers in the data.

II. DICTIONARY LEARNING FRAMEWORK
Let x ∈ Rm be an m dimensional signal with class label

i ∈ {1, . . . , L}, where L denotes the number of classes. The
training set with N signals is denoted as X = [x1, . . . ,xN ]
= [X1, . . . ,XL], where Xi contains Ni training signals
belonging to class i. The dictionary is denoted as D =
[d1, . . . ,dK] ∈ Rm×K(m ≤ K < N), where dk (k =
1, . . . ,K) denotes the kth atom of the dictionary. Columns
of the matrix C ∈ RK×N denote sparse representations of
training signals X. In dictionary learning literatures, it is
often assumed there is no outlier in the training data, which
may not be the case in practical applications. Therefore, it
is desired to detect and remove the outliers and only use the
remaining training samples to learn a dictionary.

To identify outliers, one could use either empirical do-
main knowledge or some model to distinguish outliers and
valuable data. However, empirical domain knowledge is not
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Fig. 1. An illustration of the dictionary learning model
for classification. Assume that training data X belongs to
two classes, and dictionary D is shared by all classes. We
extract the outliers, i.e. S, and train the dictionary with the
rest training samples. The constructed sparse representation
matrix for training data is C and the dictionary is D.

easy to acquire in some applications, and an outlier could
be close to a valuable data sample in terms of the Euclidean
distance. To deal with this problem, we propose to detect
outliers by using a dictionary where valuable data have
sparse representations, while outliers cannot be represented
by the dictionary with a sparse vector. With this principle
for determining outliers, we could formulate the problem
for simultaneously discriminative dictionary learning and
outliers detection. A visual illustration of this construction is
shown in Fig. 1, where the nonzero columns in S represent
outliers. Now we can formulate the dictionary learning
problem as

min
D,C,S

∥X− S−DC∥2F +λ1f(C)+λ2h(C)+λ3

∥∥ST
∥∥
row

.

(1)
For the sparse representation matrix C, the support of

signals of the same class should be as close as possible,
while to enhance discrimination, the supports of signals of
different classes should have as less overlap as possible. In
(1), f(C) and h(C) denote regularizers that capture intra-
class similarity and inter-class discrimination, respectively.∥∥ST

∥∥
row

penalizes the transpose of S to have a row-sparse
structure, and the non-zero columns of S correspond to the
detected outliers. λ1, λ2 and λ3 are weights used to balance
different terms in (1).

To capture similarity of signals from a same class, the
sparse representation matrix of the same class, i.e., Ci

(i = 1, . . . , L), is modeled with a row-sparse structure,
where elements in each row of Ci are either all zero or
mostly non-zero. The non-zero rows correspond to dictionary
atoms among signals in the same class. However, directly
minimizing the number of non-zero rows in a matrix leads
to an NP hard problem. To facilitate algorithm derivation,

we use the convex relaxed ℓ2/ℓ1 norm instead as a measure
of row-sparsity. Therefore, we design the regularization term
f(C) as

f(C) =

L∑
i=1

∥Ci∥2,1 =

L∑
i=1

K∑
k=1

∥∥cki ∥∥2 , (2)

where Ci ∈ RK×Ni is a sub-matrix of C, denoting the
sparse representation matrix for the ith class, and cki denotes
the kth row of the sparse representation matrix Ci. We would
like to allow different classes to have partly overlapped
supports as in [15]. However, the approach in [15] is
computationally expensive, and thus requires relatively high
computational resource. Besides, the impact of outliers is not
considered in [15].

Now we provide the second regularizer h(C) in (1),
which leads to the design of our computational efficient
algorithm. To enhance the discrimination capability for the
signal representations, the regularizer h(C) is used to make
the size of the overlapped support between Ci and Cj

(i ̸= j) as small as possible. For example, considering
two signal representations from distinct classes, the number
of non-zero of their element-wise product is just the size
of the overlapped support. Therefore, the discrimination
regularization term can be modeled as

h(C) =

L∑
i=1

Ni∑
p=1

∥∥W/ici,p
∥∥2
2
, (3)

where ci,p denotes the pth column of Ci, and W/i is a
diagonal matrix with the kth diagonal element is

wk
/i =

∥∥∥ck/i∥∥∥
2
, (k = 1, . . . ,K), (4)

where ck/i denotes the kth row of the matrix C/i, and C/i ∈
RK×(N−Ni) is a sub-matrix of C generated by removing the
columns in Ci.

Therefore, the discrimination regularization term h(C)
can be expressed as

h(C) =
L∑

i=1

∥∥W/iCi

∥∥2
F
. (5)

Lastly, we provide the approximation of the third regu-
larization term in (1). Because ST is desired to have be
row-sparse, we also employ the convex relaxed ℓ2/ℓ1 norm
instead as a measure of row-sparsity.∥∥ST

∥∥
row

=
∥∥ST

∥∥
2,1

. (6)

By substituting the designed regularization terms (2), (5)
and (6) into the objective function of (1), the proposed dic-
tionary learning framework can be described as the following
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optimization problem

min
D,C,S

∥X− S−DC∥2F + λ1

L∑
i=1

∥Ci∥2,1

+λ2

L∑
i=1

∥∥W/iCi

∥∥2
F
+ λ3

∥∥ST
∥∥
2,1

.

(7)

The objective function of (7) involves three variables,
where are not jointly convex for the optimization problem.
Therefore, we exploit the coordinate decent method that
solves the optimization problem by alternatively optimizing
one variable with all the others fixed.

III. OPTIMIZATION ALGORITHM

Solving the optimization problem in (7) by coordinate de-
cent method involves three sub-problems that are formulated
by updating C with fixing D and S; updating S with fixing
D and C; and updating D with fixing C and S. These
sub-problems are iteratively solved until the discriminative
dictionary D and the sparse representations {C, S} are
converged.

Firstly, given D and S fixed, the original optimization
problem (7) turns into a sparse coding problem with the
variable C = [C1, . . . ,CL]. We update the sub-matrix Ci

(i = 1, . . . , L) class by class, with all the other Cj (j ̸= i)
fixed. By removing unrelated terms, the optimization prob-
lem for each class is further reduced to

min
Ci

∥X′
i −DCi∥

2
F + λ1 ∥Ci∥2,1 + λ2

∥∥W/iCi

∥∥2
F
, (8)

where X′
i = Xi − Si. To solve the optimization problem

in (8), we employ the ADMM owning to its success in
solving various sparse approximation related problems [16]–
[18]. By introducing one auxiliary variable Zi ∈ RK×Ni , the
optimization problem in (8) can be reformulated as

min
Ci,Zi

∥X′
i −DCi∥

2
F + λ1 ∥Zi∥2,1 + λ2

∥∥W/iCi

∥∥2
F

s.t. Ci = Zi.
(9)

The augmented Lagrangian function can be formed as

Lρ(Ci,Zi,G) = ∥X′
i −DCi∥

2
F + λ1 ∥Zi∥2,1

+ λ2

∥∥W/iCi

∥∥2
F
+ tr

(
GT (Ci − Zi)

)
+

ρ

2
∥Ci − Zi∥2F ,

(10)
where G ∈ RK×Ni is the Lagrangian multiplier for the
equation constraint in (10), and ρ > 0 is a preselected
penalty parameter. The augmented Lagrangian function (10)
can be minimised over Ci, Zi and G iteratively by updating
one variable at a time and fixing the others. The resulting
algorithm is summarized in Algorithm 1. The Shrink func-
tion in Algorithm 1 updates Zi by using row-wise shrinkage,

Algorithm 1 Shared supports sparse coding via ADMM
Input: Training data X′, dictionary D, number of classes L,

regulariser parameters λ1, λ2, penalty parameter ρ.
Output: Sparse code C.
Initialization: C0 = 0, G0 = 0, iteration index t = 0.
For i = 1 : L

Do
1) Set the diagonal matrix W/i by:

(wk
/i)

t+1 =
∥∥∥(ck/i)t∥∥∥

2
.

2) Fix Zi G, and update Ci by:

Ct+1
i =argmin

Ci

Lρ(Ci,Z
t
i,G

t)

=(DTD+ λ2W
(t+1)T
/i Wt+1

/i + ρI)−1

(DTX′
i + ρZk

i − 1

2
Gt)

3) Fix Ci G, and update Zi by row-wise shrinkage:

Zt+1
i = Shrink(Ct+1

i +
1

ρ
Gt,

λ1

ρ
)

4) Fix Ci Zi, and update the Lagrange multiplier G:

Gt+1 = Gt + ρ(Ct+1
i − Zt+1

i )

Increment t.
until convergence

end for

which can be represented as:

zk =
max

{∥∥rk∥∥
2
− λ1

ρ , 0
}

∥rk∥2
rk, (11)

where zk, rk denotes the kth row of the matrix Zi and R =
Ci +

1
ρG, respectively.

After obtaining the coding matrix C, we update the matrix
S with D and C fixed. Here, the optimization problem can
be formulated as

min
S

∥X′′ − S∥2F + λ3

∥∥ST
∥∥
2,1

, (12)

where X′′ = X − DC. Here we employ the column-
wise shrinkage operation to solve the problem in (12). The
solution is given by

sk =
max

{
∥x′′

k∥2 −
λ3

2 , 0
}

∥x′′
k∥2

x′′
k, (13)

where sk and x′′
k denote the kth column of S and X′′,

respectively.
We have described the process of updating C and S above,

and now we update the dictionary D with C and S fixed.
The objective function is reduced to

min
D

∥X− S−DC∥2F . (14)
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Fig. 2. The convergence curve on 15 scene categories
dataset, where the number of training images per category
is 100, and the dictionary size is K = 450.

The solution of the above least square estimation problem is
directly given by

D = (X− S)CT (CCT )−1. (15)

After learning the discriminative dictionary D, any test
signal can be classified based on its sparse representation
over D. Although various classifiers can be applied, we
simply choose a linear classifier, as it is the most widely
used approach in related literature [6], [15]. The algorithm is
halted when the maximum number of iterations is reached or
the value of the objective function (7) in adjacent iterations
are sufficiently close. Fig. 2 demonstrates the convergence
behaviour of the proposed approach by using the Fifteen
Scene dataset [19].

IV. EXPERIMENT VALIDATION
In this section, we compare the proposed classification ap-

proach with Sparse Representation Classification (SRC) [10],
K-SVD [20], Label-Consistent K-SVD (LC-KSVD) [6], the
Fisher Discrimination Dictionary Learning algorithm (FD-
DL) [13], Low-Rand Shared Dictionary Learning (LRS-
DL) [21], and the Support Discrimination Dictionary Learn-
ing (SDDL) [15] using the Extended Yale B dataset [22],
the AR face dataset [23] and the Fifteen scene dataset [19].

The Extended Yale B dataset contains 2414 frontal im-
ages of 38 people, the images are captured under different
conditions. The images were cropped to 192 × 168 pixels,
normalized and projected to a dimension of 504 using a
random Gaussian matrix. We randomly select half of the
images for training and cross validation and the rest for
testing. The AR face dataset contains over 4000 color images
of 100 subjects, we randomly choose 20 images per subject
for training and the other 6 images for testing. Each face
image is cropped to the dimension of 165×120, normalized
and projected to a 540 dimension vector using a random
Gaussian matrix. The fifteen scene dataset [19] contains 15

Table I. Comparison of classification accuracy for various
dictionary based methods.

Method Extended Yale AR 15 Scene
SRC 80.54 66.57 91.80

K-SVD 93.40 86.50 93.60
LC-KSVD 95.00 93.70 97.01

FDDL 94.92 94.10 97.92
LRSDL 98.00 97.33 98.12
SDDL 97.08 98.00 98.02

Proposed 99.08 98.67 98.83

natural scene categories. The average image size is about 300
× 250 pixels. We use the Spatial Pyramid Features of the
images as the input signal, each feature descriptor is a vector
of dimension 3000, and we randomly select 100 images per
category for training and the rest for testing.

The initialised dictionary for each experiment is generated
by randomly selecting samples from the training data. The
dictionary size of the Extended Yale B dataset, the AR
dataset and the 15 scene dataset are 570, 500 and 450,
respectively. For the proposed approach and all the compared
methods, we employ the cross validation [24] to tune the pa-
rameters for the best performance if the optimal parameters
are not reported in literature. The experimental results are
summarized in Table I.

It can be seen that dictionary learning based methods per-
form better than SRC, which shows that better performance
can be achieved by learning a discriminative dictionary. The
proposed method achieves the highest classification accuracy
and outperforms all the other competing approaches.

V. CONCLUSIONS
In this paper, we propose a new discriminative dictio-

nary learning framework for classification. The proposed
approach simultaneously learns a discriminative dictionary
and detects outliers in the data. The proposed approach is
evaluated by using five different datasets involving human
faces, object images, hyperspectral images and scene images.
The conducted experiments consistently demonstrate that the
proposed approach yields good classification results, and
outperforms the existing state-of-the-art dictionary learning
based approaches for classification.
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