
SPARSE BOUNDED COMPONENT ANALYSIS FOR CONVOLUTIVE MIXTURES

Eren Babatas1,2 and Alper T. Erdogan1

1Koc University, Istanbul, Turkey
2Aselsan Inc., Ankara, Turkey

ABSTRACT

In this article, we propose a Bounded Component Analysis
(BCA) approach for the separation of the convolutive mix-
tures of sparse sources. The corresponding algorithm is de-
rived from a geometric objective function defined over a com-
pletely deterministic setting. Therefore, it is applicable to
sources which can be independent or dependent in both space
and time dimensions. We show that all global optima of the
proposed objective are perfect separators. We also provide
numerical examples to illustrate the performance of the algo-
rithm.

Index Terms— Convolutive Blind Source Separation,
Bounded Component Analysis, Sparse Bounded Component
Analysis.

1. INTRODUCTION

Blind Source Separation (BSS) is a central problem in sig-
nal processing, with diverse set of applications [1]. It can
be described as extracting sources from their linear mixtures,
where the mixing can be either only in source dimension (in-
stantaneous BSS) or in both source and sample dimensions
(convolutive BSS).

Bounded Component Analysis (BCA) is a recently intro-
duced source separation framework that exploits the bound-
edness of sources to relax the independence assumption in
Independent Component Analysis (ICA), with a less stringent
domain separability assumption [2]. In [3], a geometric BCA
approach, based on the volume ratios of objects defined re-
lated to separator output samples was proposed. The same
approach was later extended to convolutive mixtures [4].

Aforementioned algorithmic BCA frameworks are mostly
applicable to source vectors whose samples lie in `∞-norm
ball in high dimensional space, which is illustrated to be a
nice fit for digital communication constellations, natural im-
ages and harmonic signals. More recently, [5] adapted the
geometric approach in [3] for unmixing bounded and sparse
natured sources from their memoryless mixtures by replacing
the `∞-norm ball in [3] with the `1-norm ball.

In this article, we extend the instantaneous Sparse BCA
(SBCA) approach in [5] to more general convolutive mix-
tures. We note that the exploitation of sparsity for solving
BSS problem has been referred in literature as Sparse Com-

ponent Analysis (SCA), and several different approaches has
been proposed especially for the instantaneous mixing prob-
lem (see for example [1, 6] and the references therein). The
algorithm proposed in this paper is derived from a novel opti-
mization setting where the global maxima are proven to cor-
respond to perfect separators.

The article is organized as follows: In Section 2, we intro-
duce the Convolutive Sparse Bounded Component Analysis
(CSBCA) setup. The proposed CSBCA approach is intro-
duced in Section 3. Finally, numerical examples illustrating
the use of the proposed approach is given in Section 4.

2. CONVOLUTIVE SPARSE BOUNDED
COMPONENT ANALYSIS SETUP

For the convolutive BSS setup:

• We assume that there are p sources represented by the
set S = {s(n) ∈ <p}. Furthermore, it is assumed that
source vectors are bounded in magnitude and lie in `1
norm ball, i.e., s(n) ∈ Bs where

Bs = {s ∈ <p|‖s‖1 < 1}. (1)

This assumption implies that the sources have identical
unity range for the purpose of simplifying future ex-
pressions, without any loss of generality. In the more
general case, Bs can be replaced with the weighted `1-
norm-ball. Note that, we do not make any stochastic
assumption about the source vector such as statistical
independence of its components.

• The source signals are mixed by a convolutive MIMO
channel which is represented by

y(n) =

K−1∑
k=0

H(k)s(n− k), (2)

where {H(k), k ∈ {0, . . . ,K − 1}} are the channel
impulse response coefficients of dimension q × p.
We assume that the mixing system is equalizable
[7] having order of K − 1 and q ≥ p. Defining
H̃ = [H(0),H(1), . . . ,H(K − 1)] and s̃K(n) =
[sT (n), sT (n− 1), . . . , sT (n−K + 1)]T , the equation
for the mixing sequence in (2) is turned into

y(n) = H̃s̃K(n), n = 1, . . . L. (3)
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• The separator is a convolutive system with the input-
output relationship given by

z(n) =

M−1∑
m=0

W(m)y(n−m), (4)

where {W(m),m ∈ {0, . . . ,M − 1}} are the im-
pulse response coefficients of dimension p × q and
M − 1 is the order of the separator system. Defining
W̃ = [W(0),W(1), . . . ,W(M − 1)] and ỹM (n) =
[yT (n),yT (n− 1), . . . ,yT (n−M + 1)]T , (4) can be
written as

z(n) = W̃ỹM (n), n = 1, . . . , L+M − 1. (5)

• By defining the cascade of the mixing and separator
systems as

G(k) =

P−1∑
l=0

W(l)H(k − l), k = 0, . . . , P − 1. (6)

where P − 1 = K +M − 2 is the order of the overall
system, we can write the separator outputs in terms of
sources as

z(n) =

P−1∑
l=0

G(l)s(n− l). (7)

Defining G̃ = [G(0),G(1), . . . ,G(P − 1)] and
s̃P (n) = [sT (n), sT (n − 1), . . . , sT (n − P + 1)]T ,
(7) turns to be

z(n) = G̃s̃P (n), n = 1, . . . , L+M − 1. (8)

• We also define the extended separator output vector
z̃N (n) = [zT (n), zT (n − 1), . . . , zT (n − N + 1)]T

which will be used in the objective function definition
in the next section, and Np × (N + P − 1)p size
block-Toeplitz matrix

ΓN (G̃) =

G(0),G(1), . . . ,G(P − 1), . . . ,0
...

. . . . . .
...

0, . . . ,G(0),G(1), . . . ,G(P − 1)

 , (9)

where N ≥ P . This yields,

z̃N (n) = ΓN (G̃)s̃N+P−1(n). (10)

As a result, the convolutive channel generates L+M−1 out-
put samples. Now after defining the BCA setup, we extend
the deterministic instantaneous sparse BCA approach intro-
duced in [5] to the convolutive case.

3. CONVOLUTIVE SBCA APPROACH

In this section we propose an objective function for the con-
volutive SBCA. We then prove that all global maxima of this
objective are perfect separators, and derive an iterative algo-
rithm for obtaining the separator matrix. As the basis, we
introduce the following local dominance assumption:

Assumption (A1): The source sample set SN+P−1 =
{s̃N+P−1(N+M−1), s̃N+P−1(N+M), . . . , s̃N+P−1(L)}
contains the vertices of its bounding l1-norm-ball Bs.

3.1. Objective Function

Similar to [5], the objective function is defined as the volume
ratio of the following two objects defined for the samples of
the separator output vector z(n) and the extended separator
output vector z̃N (n):

• The bounding `1-norm ball for the extended sep-
arator vector samples z̃N (n), which is defined as
BZ = {q|‖q‖1 ≤ maxn∈{N,...,L1} ‖z̃N (n)‖1} where
L1 = L+M − 1.

• Principal Hyperellipsoid for the extended separator
vector samples z̃N (n), which is defined as EZ =

{q|(q − µ̂z̃N
)T R̂−1z̃N

(q − µ̂z̃N
) ≤ 1} where µ̂z̃N

=

1
L2

L1∑
n=N

z̃N (n), R̂z̃N
= 1

L2

L1∑
n=N

(z̃N (n)−µ̂z̃N
)(z̃N (n)−

µ̂z̃N
)T where L2 = L1 −N + 1,

Based on these definitions, we define the convolutive SBCA
objective as the volume ratio

J(W̃) =

√
det(R̂z̃N

)

(maxn∈{N,...,L1} ‖z̃N (n)‖1)Np
(11)

3.2. Global Optimality of Perfect Separators

The following theorem shows that all global optima of (11)
are perfect separators.

Theorem: Given the BCA setup in section 2 and assuming
H̃ is equalizable by an FIR extractor matrix of order M − 1,
then all global maxima of (11) are perfect separators if the
assumption (A1) is correct.

Proof: We start by rewriting the objective function, in

terms of the argument G(k) =
P−1∑
l=0

W(l)H(k − l) for

k = 0, . . . , P − 1, and G̃ = [G(0),G(1), . . . ,G(P − 1)].
We define the operator ΓN such that ΓN (G̃) is a block
Toeplitz matrix of dimension (Np) × (N + P − 1)p whose
first block row is [G(0),G(1), . . . ,G(P − 1),0, . . . ,0]
and first block column is [G(0),0, . . . ,0]T where the zero
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matrices are of dimension p × p. The resulting output
sample vector and output sample covariance matrix are
z̃N (n) = ΓN (G̃)s̃N+P−1(n) for n = N, . . . , L1, and
R̂z̃N

= ΓN (G̃)R̂s̃N+P−1
ΓN (G̃)T where s̃N+P−1 is of

dimension (N + P − 1)p × 1. We redefine the objective
function as,

J(G̃) =

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

(maxn∈{N,...,L1} ‖ΓN (G̃)s̃L3
‖1)Np

. (12)

where L3 = N + P − 1. Following similar steps as in [5]
under the assumption (A1), we can write for the denominator
of (12),

( max
n∈{N,...,L1}

‖ΓN (G̃)s̃L3‖1)Np ≤ ‖ΓN (G̃)‖Np
1,1 (13)

where ‖ΓN (G̃)‖1,1 can be explicitly written as ‖ΓN (G̃)‖1,1 =∥∥[ ‖ΓN (G̃):,1‖1, . . . , ‖ΓN (G̃):,(L3)p‖1
]∥∥
∞ [8]. If As-

sumption (A1) holds, then (13) is an equality, and we can
rewrite (12):

J(G̃) =

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )∥∥[ ‖ΓN (G̃):,1‖1 · · · ‖ΓN (G̃):,L3p‖1
]∥∥Np

∞

(14)

≤

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

(
∥∥[ ‖ΓN (G̃):,1‖1 · · · ‖ΓN (G̃):,L3p‖1

]∥∥
1
/L3p)

Np
(15)

≤

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

‖ΓN (G̃):,1‖1‖ΓN (G̃):,2‖1 · · · ‖ΓN (G̃):,L3p‖1
(16)

≤

√
det(ΓN (G̃)R̂s̃L3

ΓN (G̃)T )

ΓN (G̃):,1‖2‖ΓN (G̃):,2‖2 · · · ‖ΓN (G̃):,L3p‖2
(17)

We note that for any G̃ whose rows are not linearly inde-
pendent we have det (ΓN (G̃)R̂s̃L3

ΓN (G̃)T ) = 0; therefore,
the corresponding G̃ can not be global maxima of (11).
Hence for any G̃ whose rows are linearly independent, in
order to complete ΓN (G̃) into a full rank square matrix
we introduce a (P − 1)p × (L3)p matrix Y = DP where
D = diag(a1;a2; . . . ;a(P−1)p) is a full rank diagonal ma-
trix and P is a permutation matrix such that det(YBY) = 1

where we define B = R̂s̃L3
− R̂s̃L3

ΓN (G̃)T

(ΓN (G̃)R̂s̃L3
ΓN (G̃)T )−1ΓN (G̃)R̂s̃L3

. Using the matrix
Y, we accomplish the following equality:

det

([
ΓN (G̃)

Y

]
R̂s̃L3

[ ΓN (G̃) Y ]

)
=

det
(

ΓN (G̃)R̂s̃L3
ΓN (G̃)T

)
∗

det(Y(R̂s̃L3
− R̂s̃L3

ΓN (G̃)T ∗

(ΓN (G̃)R̂s̃L3
ΓN (G̃)T )−1ΓN (G̃)R̂s̃L3

)YT ) =

det
(

ΓN (G̃)R̂s̃L3
ΓN (G̃)T

)
det(YBY) =

det
(

ΓN (G̃)R̂s̃L3
ΓN (G̃)T

)
(18)

YBY is called the Schur complement of the expression
ΓN (G̃)R̂s̃L3

ΓN (G̃)T . We can choose an appropriate Y
matrix satisfying (18). When choosing Y appropriately and
using Hadamard’s Inequality, it yields

det

([
ΓN (G̃)

Y

]
R̂s̃L3

[
ΓN (G̃) Y

])
≤

(L3)p∏
m=1

‖ ΓN (G̃):,m ‖22‖ Y:,m ‖22 det(R̂s̃L3
) (19)

If we replace the equality for det(ΓN (G̃)R̂s̃L3
ΓN (G̃)T ) in

(19) into (17), the expression for the upper bound of the ob-
jective becomes

J(G̃) ≤
(L3)p∏
m=1

(‖ Y:,m ‖2) det(R̂s̃L3
)1/2 (20)

The inequality (15) is due to norm inequality (between l1 and
l∞ norms), with equality if and only if all the rows of G̃ has
the same l1 norm. (16) is due to arithmetic-geometric mean
inequality, with equality if and only if all the rows of G̃ has
the same l1 norm. (17) is due to norm inequality (between
l1 and l2 norms), with equality if each row of G̃ has only
one non-zero entry. (20) is due to two reasons: The first one
is again the norm inequality (between l1 and l2 norms), with
equality if each row of G̃ has only one non-zero entry. Sec-
ondly, Hadamard’s Inequality is achieved if and only if the
rows of ΓN (G̃) are orthogonal to each other and to the rows
of Y. Since we choose P ≤ N , it is guaranteed the non-zero
entries of G̃ will not be in the same position inside ΓN (G̃)
with respect to mod p. As a result, the upper bound for the
objective J(G̃) on the right hand-side of (20) is achieved if
and only if G(z) = diag

(
α1z

−d1 , α2z
−d2 , . . . , αpz

−dp
)
P.

3.3. Iterative Algorithm for Convolutive SBCA

Taking the logarithm of the SBCA objective in (11) converts
the ratio form into a difference form which can be written as
a modified objective

J (W̃) = log(J(W̃)) (21)

=
1

2
log
(

det(ΓN (W̃)R̂ỹN+M−1
ΓN (W̃)T )

)
−Np log( max

n∈{N,...,L1}
‖z̃N (n)‖1)

The modified SBCA objective J (W̃) in (21) is convenient
for the iterative algorithm derivation, due to its additive form.
Although J (W̃) is non-convex and not differentiable every-
where, we can still utilize Clarke subdifferential [9] for de-
riving iterative algorithms. More explicitly, we can write the
subdifferential set corresponding to J (W̃) as
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∂J (W̃) =

N−1∑
k=0

Xkp+1:(k+1)p,kq+1:(k+M)q (22)

−

Np
∑

l(t)∈IW̃

N−1∑
k=0

λlokp+1:(k+1)p,kq+1:(k+M)q

max
l∈{N,...,L1}

‖z̃N (l(t))‖1

|λl ≥ 0,
∑

l∈{N,...,L1}

λl = 1}

where o = sign(z̃N (l(t)))ỹN+M−1(l(t))
T

,

X =
(

ΓN (W̃)R̂ỹN+M−1
ΓN (W̃)T

)−1
ΓN (W̃)R̂ỹN+M−1

,

R̂ỹN+M−1
= 1

L2

L1∑
n=N

(ỹN+M−1(n)− µ̂ỹN+M−1
)

(ỹN+M−1(n)− µ̂ỹN+M−1
)T and

µ̂ỹN+M−1
= 1

L2

∑L1

n=N ỹN+M−1(n). IW̃ represents the
subset of {N, . . . , L1} and it corresponds to indices for which
maximum `1-norm at the separator output is achieved. We
can generate an iterative update of simple form, by selecting
a special subgradient from the subddifferential set in (23),
where only one λl term is non-zero:

W̃(t+1) = W̃(t) + σ(t)(
1

N

N−1∑
k=0

X
(t)
kp+1:(k+1)p,kq+1:(k+M)q

−
psign(W̃(t)ỹ

(t)
M (l(t)))ỹ

(t)
M (l(t))

T

max
n∈{N,...,L1}

‖W̃(t)ỹ
(t)
M (n)‖1

) (23)

4. NUMERICAL EXAMPLES

In the first numerical example, we illustrate the Signal to
Interference+Noise power Ratio (SINR) performance of the
proposed algorithm for the synthetic sparse signal set given
in the website of RIKEN Brain Science Institute [10]. We
consider a scenario with 5 sources and 1000 samples. The
convolutive mixing system is i.i.d. Gaussian with order 3,
and the separator is of order 4. Mixture outputs are also cor-
rupted by Gaussian noise. We compare the performance of
the algorithm with 3 different algorithms, i.e., Castella’s al-
gorithm optimizing kurtosis based contrast function [11], and
Koldovský’s algorithm [12] based on EFICA which is an ex-
tension of the famous ICA method. We utilized the MATLAB
toolbox called BSS Eval [13] to measure the performance of
the algorithms. The source signals are illustrated in Fig.1-(a).
Based on the results in Fig.1-(b) and Fig.2, we can comment
that the algorithm almost consistently provides improvement
over the other algorithms. In the second example, we synthet-
ically generate sparse dependent sources by using Copula-T
distribution with four degrees of freedom, and then trans-
forming i.i.d. uniform random vector u ∈ [−1, 1]p through

Fig. 1. a)- Synthetic sparse signals. b)- Output SDR vs. input
SNR for 5 sources and 10 mixture channels.

Fig. 2. a)- Output SDR vs. mixing order for 5 sources and
10 mixture channels under SNR=20 dB. b)- Output SDR vs.
number of mixture channels for 5 sources under SNR=20 dB.

the mapping

s =

{
u, u ∈ Br

0, otherwise
(24)

where Br = x : ‖xr‖ ≤ 1 with 0 ≤ r ≤ 1. In the sce-
nario, there are 2000 samples, an i.i.d. Gaussian convolutive
mixing system of order 3 and a separator of order 4. The per-
formance of the proposed algorithm for different correlation
degrees is examined. The results are illustrated in Fig.3. We
note that dependency used in source generation effects the
performances, and still the proposed algorithm yields better
performance than the other algorithms for all cases.

Fig. 3. a)- Copula-T distributed random sparse sequences. b)-
Output SINR vs. correlation for 3 sources under SNR=20 dB.
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