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ABSTRACT

Convolutional sparse coding (CSC) has become an important
method in image processing and computer vision. In this pa-
per we focus on visual recognition problems and apply CSC
as a feature learning method. We propose a task-specific ap-
proach to treat the dictionary of CSC as parameters for a
larger learning framework. These parameters are differen-
tiable under mild conditions, and could be updated end-to-end
using back-propagation when the errors from the task objec-
tives are provided. We perform several experiments to show
that such method provides a more discriminate representation
compared with previous CSC methods, and this data driven
approach is effective for visual recognition problems.

Index Terms— convolutional sparse coding, dictionary
learning, sparse representation, supervised learning, visual
recognition

1. INTRODUCTION

Sparse coding (SC) algorithms aims to represent a vector with
the linear combination of a set of over-complete basis un-
der sparsity constraints. It has been successfully applied to
different tasks, notably computer vision and visual recogni-
tion problems [1], where the learned representations serve as
discriminative features for higher level vision tasks. Tradi-
tionally, dictionaries for such representations are learned by
extracting patches in an image database and then using un-
supervised methods such as K-Means [2]. This relies on the
assumption that these overlapping patches are independent of
each other, thus it fails to model shift invariance within the
same image and is not optimal. On the other hand, convolu-
tional sparse coding (CSC) attempts to remedy this by using
convolution operation:
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Instead of learning from patches, the whole input vector
x € RN is represented as the combination of m feature
maps {c; },~, under m convolutional filters {d;}.~,, where

a; € RN and d; € R". In this paper, we demonstrate that
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the corresponding dictionaries d; could be learned using a
data driven approach. We utilize label information for each
image and back-propagate errors [3] from our task objective
to the target sparse code. Using optimality condition of (1),
the derivative with respect to the objective could be obtained
and dictionary is updated using stochastic gradient descent.

Related works. Due to the difficulties of solving (1), the
developments of convolutional sparse coding algorithms have
been focusing on efficient solvers for CSC. Most of them
adopt ADMM [4] and solve (1) in frequency domain [5, 6, 7].
Recent works in [8] also discuss the theoretical foundation
of CSC, and they propose several efficient algorithms to solve
CSC on time domain. Although efficient computational meth-
ods are not the main focus of this paper, we have to stress that
CSC enforces a heavier computational load compared with
sparse coding, and an efficient solver is the key to a success-
ful CSC algorithm.

Traditional methods for sparse feature learning is split
into two phases: a training phase for unsupervised learning
of dictionaries and an encoding phase for decomposing im-
ages as sparse representations of dictionary basis [9]. The
encoded (sparse) features are then used to train a classifier.
The idea of learning dictionaries using convolutional dictio-
nary learning is discussed in [10, 11, 12], where they aim to
build a hierarchical representation by stacking up multiple
convolutional sparse coding modules. Although these meth-
ods have been successful in visual recognition problems, it
would be more desirable if dictionaries could adapt to spe-
cific vision tasks. Such method is discussed in [13, 14] under
patch-based sparse dictionary learning contexts. In particu-
lar, [14] proposes to update the dictionary in a supervised way
and achieves competitive results. Recently, [15] provides an
alternative way of supervised dictionary learning by combin-
ing CSC framework with sparse representation classification
method (SRC) in [16]. They train one set of dictionaries spe-
cific for each class and each image is matched to the class
with smallest reconstruction residual at test phase. Although
the label information is encoded in the dictionary, the classi-
fier itself is nonparametric and cannot be generalized to larger
scale. Moreover, the dictionaries could not be updated batch-
by-batch in an online learning fashion.

Our contributions. This paper describes an algorithm
to learn the convolutional dictionaries in convolutional sparse
coding problems in a supervised way. Inspired by [14], the
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sparse code is regarded as a function of the input vector and
the dictionary. The optimality condition is applied which
shows that under mild condition the task objective is differ-
entiable with the dictionaries. We show close form solution
of the gradients so that the supervised loss could be opti-
mized using back-propagation method. Compared to previ-
ous results [15], our method is an end-to-end algorithm with
no separate learning stage, and we also demonstrate superior
performance on benchmarking dataset.

2. DATA DRIVEN CONVOLUTIONAL SPARSE
CODING

2.1. Problem Formulation

Given an input vector z, the convolutional sparse coding algo-
rithm computes the sparse code « for each z with parameters
Dli
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Here z € RY is the input vector, o; € RN is the convolu-
tional sparse code, d; € R" is the filter, « is the concatena-
tion of sparse codes and D; = [dy,...,d,;,] € R**™ is the
concatenation of the filters. Notice we use the elastic net [17]
formulation, which is important for the stability of backward
computation and will be discussed later. After encoding us-
ing (2), the supervised learning problem is formulated as the
following loss objective £ under expectation of joint sample
space ) X X:
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where y € ) is the label, x € X is the sample. [, defines
a supervised loss and W is the collection of parameters for
this loss. D; and W are the constraint sets for D; and W
respectively. In this way the label information y € ) is back-
propagated directly from (3) to D; using stochastic gradient
descent. Our main objective is to minimize (3) to learn a task
specific dictionary.

2.2. Forward Encoding

The form of (2) is actually hard to optimize. [5, 6, 7] propose
to solve (2) (when Ay = 0) using ADMM. Here instead, we
adopt the slice representation of the convolution [8]. Assum-
ing a circular boundary, the convolution operation is equiva-
lent to a matrix multiplication:

i dl * o = iDiai = Da, (4)
i=1 i=1

where D, « are the concatenation of circulant matrices D;
and sparse codes «; respectively. It is noticed in [8] that rear-
ranging columns of D gives rise to a more compact represen-

tation:
N
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where {di}fil is the rearragement of {o;};—,. R; € RN
is a patch extractor that extracts the i-th patch from the input
vector, and its transpose R} aggregates the patch to recon-
struct the vector.!

Using such representation, (2) could be solved iteratively
using ISTA [18] as described in [8]:
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Notice the additional coefficient (1 — \2/c), which is due to
the Lo regularization term. ¢ > Apax(DTD) to ensure con-
vergence in ISTA.

2.3. Backward Update

To update the dictionary D; we need to calculate the deriva-
tive of (3) with respect to D;. The differentiability property
is proved in Section 4 of [14], where they consider the ordi-
nary sparse coding problem. We summarize the result into the
following lemma:

Lemma 1 For ordinary elastic net problem o(x,D) =
argmin 3 ||lz — Dall3 + A\ ||y + 22(|e]3, if A2 > 0 and (i)

X and Y are compact, (ii) ls is twice continuously differen-
tiable, (iii) py, x(y, ) is continuous for any y € Y, then the
function L in (3) is differentiable, and

VbL(D, W) =Ey x| -DBa" + (z - Da)"[, ()
where 3 € RN™ is of the same size as o satisfying

By = (DIDy + XoT) ' Vo, Lo(y, W, ), (8)

and Bpe = 0. A = {j|je{l,...,Nm}, a[j] # 0} is the
nonzero index set of o.
|

Notice that the full matrix D is parameterized by D, thus
Vb, L(D;, W) could be computed from Vp £(D, W) by the
chain rule:

ISince we are always using the slice decomposition (5), in the following
we use «; instead of &; to simplify notation.
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Algorithm 1: Sliced-based Supervised Dictionary Learning
for Convolutional Sparse Coding

Data: Sample space ) x X, initial values W and Dy,
iteration 7', learning rate 7).

fortinl:T do

Sample data (y;,z:) € Y x X;

Solve «; from (2) using ISTA (6);

Compute loss I (y:, W, ot );

Compute 3; using (8) and back-propagated error
vals (yta W7 at);

Compute the derivative Vp, £L(D;, W) using (11);

Compute the derivative Vw L(D;, W) using
back-propagation;

Update weights:
W HW (W — UVWE(DI, W)) 12)
D, « IIp, (D; — nVp,L(D;, W))
oL
oy oo W)
— tr [VD£(D,W)T ob }
O ©)
B B T B 7, T 0D
=E {tr{( Dpa” + (z —Da)s™) adikH
oD oD
T _ T
]E{ 8D 8dzka+(z Da) 8dmﬂ}

Using the parametric representation of D« (and similarly for

Dﬁ)’
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where E;;, € R*™™ is 1 at (i, k) and O otherwise, the final
result is

N N
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Here S is solved by (8), and 3; € R™ is the i-th slice of 3.
The form of (11) is very similar to (7). When the derivative is
computed, D; could be updated using SGD. The main algo-
rithm is summarized in Algorithm 1.

2.4. Discussion on Computational Issues

The heaviest computation falls on equation (8), where we
have to compute the inverse of a large matrix for every it-
eration, and the complexity is O(p?) for p = |A|. The same
problem exists for the original CSC problem, but since D has
a banded circulant structure, this problem could be solved ef-
ficiently by FFT [5, 7]. On the other hand, because of the fact
that the value of A is data dependent and varies for each sam-
ple and each iteration, the block circulant structure of DTD
is not preserved, and our backward update (12) could not ben-
efit from this Fourier trick. Although there are other methods
(exact or approximate) for solving a positive definite system,
empirically we find none could beat this complexity by a large
margin when sparsity is high (p < Nm), and they often bring
heavy overheads which makes it harder to optimize. Thus in
our implementation we simply use Cholesky factorization to
solve (8).

An alternative way of accelerating the gradient compu-
tation is to reduce the context size, i.e. cropping the full im-
ages into smaller patches for encoding. Such approach is very
similar to traditional patch-based sparse coding methods, ex-
cept that we compute CSC code on each image patch instead
of solving SC problem. Intuitively, pixels that are far away
within the same image is less relevant to each other than those
that are near, so it is reasonable to assume that they are inde-
pendent. When such cropping strategy is applied, ideally the
time complexity for matrix inverse will be reduced by £ if the
image is cropped to k? patches.

3. EXPERIMENTS

In this section we show experimental results on MNIST [19]
hand written digit classification. For all our experiments the
convolutional sparse code is solved via (6) with the kernel
size of 5 x 5, which is then max-pooled to a spatial resolu-
tion of 4 x 4. The output is used as a feature for an ordinary
fully connected network with softmax loss. We fix A\; = 0.1
and Ao = 1 for all our experiments. These values are picked
empirically instead of cross validation. We use a learning rate
of 0.01 and reduce by a factor of 0.1 when the loss plateaus.
The model is learned end-to-end using Caffe [20].

3.1. Training Versus Encoding

We first demonstrate the effectiveness of the proposed algo-
rithm by comparing classification results on MNIST with or
without training the dictionary using Algorithm 1. We initial-
ize the values of the dictionary from a Gaussian distribution
with mean 0 and standard derivation of 0.01, which is inde-
pendent of the data distribution. We set the number of feature
maps for our dictionary to be 128 for both experiments, and
iterate over the training set for 2100 iterations with batch size
100. To evaluate how reducing context size in Section 2.4
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Table 1. Comparison of different methods and training data
settings on MNIST dataset

method settings accuracy (%)
Ours (small context) all samples 96.99
Ours (no update) all samples 98.27
Ours (supervised) all samples 98.72
CSC+SVM? [12] 300 training samples 83.1
CSCC [15] 300 training samples 84.5
Ours (supervised) 300 training samples 90.2
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Fig. 1. Effect of supervised training compared to randomly
initialized case on MNIST

influences accuracy, we use the same experimental settings
except for a smaller context size of 7 x 7.

The results could be seen in Table 1 where all samples are
used. We notice that even if the dictionary is not updated, the
encoded features are still reaching to an accuracy of 98.27%.
This phenomenon is not surprising and has been observed
in [9] on the CIFAR-10 dataset. They find that proper encod-
ing has a larger influence on sparse feature learning than an
unsupervised dictionary learning method such as K-Means.
Our proposed supervised CSC method increases the accuracy
to a slightly better result of 98.72%. We also show in Fig 1
that the loss is systematically lower that that of a random ini-
tialization case, indicating that dictionary learning is also a
critical step for sparse feature learning.

We also observe the accuracy for small context case. The
performance is worse than the random dictionary case in full
context scenario. Considering that MNIST is a rather clean
and structural dataset, we hypothesize that the relations be-
tween patches are important as well. We also observe the up-

2This accuracy result is adopted from [15].
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Fig. 2. Accuracy on MNIST using 300 training samples

date speed increase by a factor between 2 and 3 with smaller
context size, which approximately follows our estimate of a
factor of 4 (for patch size reducing from 28 to 7).

3.2. Compare with Previous Results

We also compare with other results on MNIST using CSC.
We note results reported in [15], where they learn one dictio-
nary for each class. For MNIST they use 15 filters, 30 training
samples and 100 test samples per class. For fair comparison
we use the same number of training and testing samples, but
only 100 filters. The learning rate is fixed at 0.01 and the
training process stops early at 60 iterations since the training
set size is very small. Other parameter settings are the same
as Section 3.1. The final result is averaged over five runs,
which is shown in Fig 2. The red zone is the accuracy for
each iteration.

We compare to results reported in [15] in Table 1. Our su-
pervised algorithm reaches to an accuracy of over 90%, beat-
ing previous ones by a large margin with fewer filters and
smaller kernels.

4. CONCLUSION

We have presented in this paper a supervised formulation of
dictionary learning for convolutional sparse coding. Such su-
pervision allows the dictionaries to be fine-tuned for specific
tasks, and the whole framework could be learned end-to-end
using stochastic gradient descent. Experiments on MNIST
hand written digit classification demonstrate that such method
is more effective in recognition problem than previous CSC
methods. Future work would be focusing on more efficient
backward update methods. In addition, a hybrid method com-
bining reconstruction capacity and the power of supervision
for convolutional sparse coding is also desirable.
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